求答案 ? 一筐鸡蛋: 1个1个拿,正好拿完。 2个2个拿,还剩1个。 3个3个
求答案?一筐鸡蛋:1个1个拿,正好拿完。2个2个拿,还剩1个。3个3个拿,正好拿完。4个4个拿,还剩1个。5个5个拿,还差1个。6个6个拿,还剩3个。7个7个拿,正好拿完...
求答案 ?
一筐鸡蛋:
1个1个拿,正好拿完。
2个2个拿,还剩1个。
3个3个拿,正好拿完。
4个4个拿,还剩1个。
5个5个拿,还差1个。
6个6个拿,还剩3个。
7个7个拿,正好拿完。
8个8个拿,还剩1个。
9个9个拿,正好拿完。
问筐里最少有多少鸡蛋 展开
一筐鸡蛋:
1个1个拿,正好拿完。
2个2个拿,还剩1个。
3个3个拿,正好拿完。
4个4个拿,还剩1个。
5个5个拿,还差1个。
6个6个拿,还剩3个。
7个7个拿,正好拿完。
8个8个拿,还剩1个。
9个9个拿,正好拿完。
问筐里最少有多少鸡蛋 展开
4个回答
展开全部
求答案 ?
一筐鸡蛋:
1个1个拿,正好拿完。
2个2个拿,还剩1个。
3个3个拿,正好拿完。
4个4个拿,还剩1个。
5个5个拿,还差1个。
6个6个拿,还剩3个。
7个7个拿,正好拿完。
8个8个拿,还剩1个。
9个9个拿,正好拿完。
问筐里最少有多少鸡蛋
问题整理如下:
一、1个1个拿,正好拿完。
二、2个2个拿,还剩1个。
三、3个3个拿,正好拿完。
四、4个4个拿,还剩1个。
五、5个5个拿,还差1个。
六、6个6个拿,还剩3个。
七、7个7个拿,正好拿完。
八、8个8个拿,还剩1个。
九、9个9个拿,正好拿完。
根据数学常识,满足第八个条件的数字,必然满足条件一、二、四。
满足条件九的必然满足条件三。
观察条件五,5个5个拿,还差1个。如果少拿一次,就是剩下4个。
所以最后问题简化为:
一、5个5个拿,还剩4个。
二、6个6个拿,还剩3个。
三、7个7个拿,正好拿完。
四、8个8个拿,还剩1个。
五、9个9个拿,正好拿完。
条件三五,决定了数字是7和9的最小公倍数63*N(N为>=1的整数)
即63,126,189........
再看条件一二四,如果各少拿一次,就成了
一、5个5个拿,还剩9个。
二、6个6个拿,还剩9个。
四、8个8个拿,还剩9个。
所台,如果鸡蛋总数减9个,剩下的按5、6、8取,正好取完,即总数=5、6、8的最小公倍数120*M+9(M为>=1的整数),即129,249,369,.......
最后列出同余函数:
63N=9(MOD 120)
解函数,N最小值为:23
鸡蛋总数:63*23=1449
同余函数的解法请自己百度,如果不想用同余函数求解,就按上面两个数列进行延伸,碰到的第一个相同数字即答案:
第一个数列:
63,126,189,252,315,378,441,504,567,630,693,756,819,882,945,1008,1071,1134,1197,1260,1323,1386,1449,。。。。。
第二个数列:
129,249,369,489,609,729,849, 969,1089,1209,1329,1449。。。。。
在1449处相同了。OK,这就是最小值 。如果有求其它解,把这个数列继续延伸,会出无数合题的结果
一筐鸡蛋:
1个1个拿,正好拿完。
2个2个拿,还剩1个。
3个3个拿,正好拿完。
4个4个拿,还剩1个。
5个5个拿,还差1个。
6个6个拿,还剩3个。
7个7个拿,正好拿完。
8个8个拿,还剩1个。
9个9个拿,正好拿完。
问筐里最少有多少鸡蛋
问题整理如下:
一、1个1个拿,正好拿完。
二、2个2个拿,还剩1个。
三、3个3个拿,正好拿完。
四、4个4个拿,还剩1个。
五、5个5个拿,还差1个。
六、6个6个拿,还剩3个。
七、7个7个拿,正好拿完。
八、8个8个拿,还剩1个。
九、9个9个拿,正好拿完。
根据数学常识,满足第八个条件的数字,必然满足条件一、二、四。
满足条件九的必然满足条件三。
观察条件五,5个5个拿,还差1个。如果少拿一次,就是剩下4个。
所以最后问题简化为:
一、5个5个拿,还剩4个。
二、6个6个拿,还剩3个。
三、7个7个拿,正好拿完。
四、8个8个拿,还剩1个。
五、9个9个拿,正好拿完。
条件三五,决定了数字是7和9的最小公倍数63*N(N为>=1的整数)
即63,126,189........
再看条件一二四,如果各少拿一次,就成了
一、5个5个拿,还剩9个。
二、6个6个拿,还剩9个。
四、8个8个拿,还剩9个。
所台,如果鸡蛋总数减9个,剩下的按5、6、8取,正好取完,即总数=5、6、8的最小公倍数120*M+9(M为>=1的整数),即129,249,369,.......
最后列出同余函数:
63N=9(MOD 120)
解函数,N最小值为:23
鸡蛋总数:63*23=1449
同余函数的解法请自己百度,如果不想用同余函数求解,就按上面两个数列进行延伸,碰到的第一个相同数字即答案:
第一个数列:
63,126,189,252,315,378,441,504,567,630,693,756,819,882,945,1008,1071,1134,1197,1260,1323,1386,1449,。。。。。
第二个数列:
129,249,369,489,609,729,849, 969,1089,1209,1329,1449。。。。。
在1449处相同了。OK,这就是最小值 。如果有求其它解,把这个数列继续延伸,会出无数合题的结果
展开全部
有毒啊你这题
追答
我怎么感觉这题有问题啊
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
81.........
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
441个
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询