将函数fz=1/z(1-z)^2在圆环0<‖z-1‖<1,及1<‖z-1‖<正无穷内展开洛朗级数
2个回答
展开全部
设
f(z)=A/z+B/(1-z)+C/(1-z)²
=[A(1-z)²+Bz(1-z)+Cz]/z(1-z)²
=[A+(-2A+B+C)z+(A-B)z²]/z(1-z)²
A=1
-2A+B+C=0
A-B=0
B=A=1
C=2A-B=A=1
f(z)=1/z+1/(1-z)+1/(1-z)²
对于0<||Z-1||<1
f(z)=1/z+1/(1-z)+1/(1-z)²
=1/(z-1+1)+1/(1-z)+1/(1-z)²
=1/[1-(1-z)]+1/(1-z)+1/(1-z)²
=1/(1-z)²+1/(1-z)+1+(1-z)+(1-z)²+...+(1-z)^k+.....
对于1<||z-1||<+∞
f(z)=1/z+1/(1-z)+1/(1-z)²
=f(z)=1/(z-1+1)-1/(z-1)+1/(z-1)²
=[1/(z-1)]/[1+1/(z-1)]-1/(z-1)+1/(z-1)²
=....(-1)^(k+1)/(z-1)^k+......+1/(z-1)³-1/(z-1)²+1/(z-1)-1/(z-1)+1/(z-1)²
=....(-1)^(k+1)/(z-1)^k+......-1/(z-1)^4+1/(z-1)³
f(z)=A/z+B/(1-z)+C/(1-z)²
=[A(1-z)²+Bz(1-z)+Cz]/z(1-z)²
=[A+(-2A+B+C)z+(A-B)z²]/z(1-z)²
A=1
-2A+B+C=0
A-B=0
B=A=1
C=2A-B=A=1
f(z)=1/z+1/(1-z)+1/(1-z)²
对于0<||Z-1||<1
f(z)=1/z+1/(1-z)+1/(1-z)²
=1/(z-1+1)+1/(1-z)+1/(1-z)²
=1/[1-(1-z)]+1/(1-z)+1/(1-z)²
=1/(1-z)²+1/(1-z)+1+(1-z)+(1-z)²+...+(1-z)^k+.....
对于1<||z-1||<+∞
f(z)=1/z+1/(1-z)+1/(1-z)²
=f(z)=1/(z-1+1)-1/(z-1)+1/(z-1)²
=[1/(z-1)]/[1+1/(z-1)]-1/(z-1)+1/(z-1)²
=....(-1)^(k+1)/(z-1)^k+......+1/(z-1)³-1/(z-1)²+1/(z-1)-1/(z-1)+1/(z-1)²
=....(-1)^(k+1)/(z-1)^k+......-1/(z-1)^4+1/(z-1)³
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询