要学习人工智能,就要先了解清楚人工智能是什么。人工智能就是制造智能的机器,更特指制作人工智能的程序。人工智能模仿人类的思考方式使计算机能智能的思考问题,人工智能通过研究人类大脑的思考、学习和工作方式,然后将研究结果作为开发智能软件和系统的基础。
第一步:选好研究领域
人工智能包含很多细分领域,包括可视化、图像识别、智能机器人等。想要学习人工智能,要在学习前选好自己感兴趣的方向,有方向的进行学习。寻找一些免费的书籍,对行业有所了解后才能清楚自己要走的路。贪多嚼不烂,不提倡每个领域都去尝试。要选定一个方向去深入研究。选好方向后,就要一步一步深入学习了。
第二步:打牢数学基础
数学是打开科学大门的钥匙,数学知识是基础里的基础了。数学基础知识蕴含着处理智能问题的基本思想与方法,也是理解复杂算法的必备要素。
数学基础包括高等数学、概率论和线性代数等。高等数学里主要包括常数e、导数、信息熵与组合数、梯度下降、牛顿法等;概率论主要有概率论基础、古典模型、常见概率分布、大数定理和中心极限定理、协方差(矩阵)和相关系数、最大似然估计和最大后验估计等;线性代数及矩阵包括线性空间及线性变换、状态转移矩阵、特征向量、阵的相关乘法、矩阵的QR分解、对称矩阵、正交矩阵、正定矩阵、矩阵的SVD分解、矩阵映射/投影等。这些内容几乎在大一大二的课程里都会学到过。还有就是凸优化,掌握一些凸优化基本概念、凸集、凸函数、凸优化问题标准形式等基础就可以了。
第三步:掌握计算机语言
每种语言都有它的优缺点,可以在了解后结合自己选定的细分领域进行选择。
C++的所有设置都优于Java或Python,并帮助开发人员最大化硬件的功能。Python非常高效,效率比java、r、matlab高,在学习入手方面较为简单等。至于是C++、Python、Octave / MATLAB、R、Java、R还是其他一些语言,如何选择取决于你想要做的内容。
第四步:使用开源框架
选择一个GPU,找一个开源框架,自己多动手训练深度神经网络,多写代码,做一些与人工智能相关的项目。通过实践巩固自己的理论知识,通过动手提升自己的实操能力。
第五步:拓展自己视野
了解行业最新动态和研究成果,比如经典论文,网络上该领域达人分享的知识等,通过与该领域更专业人士的沟通学习,提升自己的眼界与技能。善于使用GitHub等平台,搜索热门项目,通过练习提升自己的技能,提高自己的实操能力。
第六步:深入研究,成为该领域的牛人
当你掌握了基础知识与理论,也具备了实操能力,并且眼界与思维能力处在同行业的前端了,积累了丰厚的项目经验,那么恭喜你,你已经成为该专业领域的牛人了。但学习不能停止,每个行业都处在不停的更新变化中,需要具备敏锐的洞察力,及时跟上行业前言。
2024-10-28 广告
需要算法的积累:人工神经网络,支持向量机,遗传算法等等算法;当然还有各个领域需要的算法,比如要让机器人自己在位置环境导航和建图就需要研究SLAM;总之算法很多需要时间的积累。
需要掌握至少一门编程语言:毕竟算法的实现还是要编程的;如果深入到硬件的话,一些电类基础课必不可少。
另外人工智能对学历要求很高,研究生只是入门,而且对算法也有很高的要求,总的来讲,入门人工智能门槛很高。