求函数单调区间和极值
展开全部
y=(x-4)(x+1)^(2/3)
y' = (x+1)^(2/3) + (2/3)(x-4)(x+1)^(-1/3)
y'=0
x+1 + (2/3)(x-4) =0
3(x+1)+2(x-4)=0
5x=5
x=1
y'|x=1+ >0
y'|x=1- <0
x=1 (min)
min f(x) = f(1) =(1-4)(1+1)^(2/3) = -3. 2^(2/3)
单调区间
增加=[1,+∞)
减小=(-∞->1]
y' = (x+1)^(2/3) + (2/3)(x-4)(x+1)^(-1/3)
y'=0
x+1 + (2/3)(x-4) =0
3(x+1)+2(x-4)=0
5x=5
x=1
y'|x=1+ >0
y'|x=1- <0
x=1 (min)
min f(x) = f(1) =(1-4)(1+1)^(2/3) = -3. 2^(2/3)
单调区间
增加=[1,+∞)
减小=(-∞->1]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询