怎么确定一个问题是否为排列组合问题?
排列,一般地,从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个元素中取出m个元素的一个排列(permutation)。特别地,当m=n时,这个排列被称作全排列(all permutation)。
排列(permutation),数学的重要概念之一。有限集的子集按某种条件的序化法排成列、排成一圈、不许重复或许重复等。从n个不同元素中每次取出m(1≤m≤n)个不同元素,排成一列,称为从n个元素中取出m个元素的无重复排列或直线排列,简称排列。从n个不同元素中取出m个不同元素的所有不同排列的个数称为排列种数或称排列数,记为
(或
),
注:当且仅当两个排列的元素完全相同,且元素的排列顺序也相同,则两个排列相同。例如,abc与abd的元素不完全相同,它们是不同的排列;又如abc与acb,虽然元素完全相同,但元素的排列顺序不同,它们也是不同的排列。
排列可分选排列与全排列两种,在从n个不同元素取出m个不同元素的排列种,当m<n时,这个排列称为选排列;当m=n时,这个排列称为全排列。n个元素的全排列的个数记为Pn,
就是说,n个不同元素全部取出的排列数,等于正整数1到n的连乘积。正整数一到n的连乘积,叫做n的阶乘,用n!表示。我们规定0!=1。
一个从n个元素中取m个元素的排列可以看成这n个元素组成的集合A的一个m元有序子集,于是A的m元有序子集的个数为
。
希望我能帮助你解疑释惑。
广告 您可能关注的内容 |