3个回答
展开全部
(3) 原积分 I = ∫<0, π/4>xd(1+tanx)/(1+tanx)^2
= -∫<0, π/4>xd[1/(1+tanx)]
= -[x/(1+tanx)]<0, π/4> + ∫<0, π/4>dx/(1+tanx),
= -π/8 + ∫<0, π/4>cosxdx/(cosx+sinx)
= -π/8 + ∫<0, π/4>cos(x-π/4+π/4)dx/[√2cos(x-π/4)]
= -π/8 + ∫<0, π/4>(√2/2)[cos(x-π/4)-sin(x-π/4)]dx/[√2cos(x-π/4)]
= -π/8 + (1/2)∫<0, π/4>[1-tan(x-π/4)]dx
= -π/8 + π/8 - (1/2)∫<0, π/4>tan(x-π/4)d(x-π/4)
= (1/2)[lncos(x-π/4)]<0, π/4> = (1/4)ln2
= -∫<0, π/4>xd[1/(1+tanx)]
= -[x/(1+tanx)]<0, π/4> + ∫<0, π/4>dx/(1+tanx),
= -π/8 + ∫<0, π/4>cosxdx/(cosx+sinx)
= -π/8 + ∫<0, π/4>cos(x-π/4+π/4)dx/[√2cos(x-π/4)]
= -π/8 + ∫<0, π/4>(√2/2)[cos(x-π/4)-sin(x-π/4)]dx/[√2cos(x-π/4)]
= -π/8 + (1/2)∫<0, π/4>[1-tan(x-π/4)]dx
= -π/8 + π/8 - (1/2)∫<0, π/4>tan(x-π/4)d(x-π/4)
= (1/2)[lncos(x-π/4)]<0, π/4> = (1/4)ln2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
在积分学中,只要积分区间相同,被积函数式也相同,那么无论自变量用什么字母表示,积分值都不变。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询