椭圆x^2/a^2+y^/b^2=1(a>b>0)长轴的有端点为A,若椭圆上存在一点P,使∠APO=90
2个回答
展开全部
很简单
解:椭圆x^2/a^2+y^2/b^2=1(a>b>0)长轴的端点A,若存在一点P,使得∠APO=90
不妨设端点A在右端点为(a,0),P(x,y)
|P0|^2+|PA|^2=|0A|^2
计算得到P的轨迹x^2+y^2-ax=0
P必须与椭圆x^2/a^2+y^2/b^2=1(a>b>0)相交才能满足要求
故两方程联立得到
[(a^2-b^2)/a^2]x^2-ax+b^2=0
判别式
△=a^2-4b^2*[(a^2-b^2)/a^2]≥0
根据c^2=a^2-b^2,
离心率
e=c/a
判别式整理得到4e^4-4e^2+1≥0
但(2e^2-1)^2≥0是显然的
所以只需要0
评论
0
20
加载更多
解:椭圆x^2/a^2+y^2/b^2=1(a>b>0)长轴的端点A,若存在一点P,使得∠APO=90
不妨设端点A在右端点为(a,0),P(x,y)
|P0|^2+|PA|^2=|0A|^2
计算得到P的轨迹x^2+y^2-ax=0
P必须与椭圆x^2/a^2+y^2/b^2=1(a>b>0)相交才能满足要求
故两方程联立得到
[(a^2-b^2)/a^2]x^2-ax+b^2=0
判别式
△=a^2-4b^2*[(a^2-b^2)/a^2]≥0
根据c^2=a^2-b^2,
离心率
e=c/a
判别式整理得到4e^4-4e^2+1≥0
但(2e^2-1)^2≥0是显然的
所以只需要0
评论
0
20
加载更多
展开全部
椭圆x^2/a^2+y^2/b^2=1(a>b>0)长轴的端点a,若存在一点p,使得∠apo=90
不妨设端点a在右端点为(a,0),p(x,y)
|p0|^2+|pa|^2=|0a|^2
计算得到p的轨迹x^2+y^2-ax=0
p必须与椭圆x^2/a^2+y^2/b^2=1(a>b>0)相交才能满足要求
故两方程联立得到
[(a^2-b^2)/a^2]x^2-ax+b^2=0
判别式△=a^2-4b^2*[(a^2-b^2)/a^2]≥0
根据c^2=a^2-b^2,离心率e=c/a
不妨设端点a在右端点为(a,0),p(x,y)
|p0|^2+|pa|^2=|0a|^2
计算得到p的轨迹x^2+y^2-ax=0
p必须与椭圆x^2/a^2+y^2/b^2=1(a>b>0)相交才能满足要求
故两方程联立得到
[(a^2-b^2)/a^2]x^2-ax+b^2=0
判别式△=a^2-4b^2*[(a^2-b^2)/a^2]≥0
根据c^2=a^2-b^2,离心率e=c/a
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询