求xy"+y'=0的通解

 我来答
建起云苍水
2020-05-13 · TA获得超过3.7万个赞
知道大有可为答主
回答量:1.4万
采纳率:27%
帮助的人:875万
展开全部
解:令z=1/y²,则y'=-y³z'/2
代入原方程,化简得
xz'-2z+2x=0.........(1)
再令x=e^t,则xz'=dz/dt
代入方程(1),化简得
dz/dt-2z=-2e^t..........(2)
∵方程(2)是一阶线性微分方程
于是,由一阶线性微分方程的通解公式,可得方程(2)的通解是
z=2e^t+ce^(2t)
(c是任意常数)
∴方程(1)的通解是
z=2x+cx²
故原方程的通解是
(2x+cx²)y²=1。
网易云信
2023-12-06 广告
UIkit是一款轻量级、模块化、基于jQuery的UI框架,它提供了大量易于使用的UI组件,包括按钮、表单、表格、对话框、通知等等。UIkit的设计理念是尽可能地简洁和灵活,开发者可以根据自己的需求自由地选择需要的组件和样式,从而快速构建出... 点击进入详情页
本回答由网易云信提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式