矩阵特征值及特征向量关系
展开全部
x为矩阵A的特征值,a为A的特征值x对应的特征向量
则Aa=xa
定义 设A是n阶方阵,如果数λ和n维非零列向量x使关系式
AX=λX (1)
成立,那么这样的数λ称为矩阵A特征值,非零向量x称为A的对应于特征值λ的特征向量.(1)式也可写成,
( A-λE)X=0 (2)
这是n个未知数n个方程的齐次线性方程组,它有非零解的充分必要条件是系数行列式
| A-λE|=0 , (3)
则Aa=xa
定义 设A是n阶方阵,如果数λ和n维非零列向量x使关系式
AX=λX (1)
成立,那么这样的数λ称为矩阵A特征值,非零向量x称为A的对应于特征值λ的特征向量.(1)式也可写成,
( A-λE)X=0 (2)
这是n个未知数n个方程的齐次线性方程组,它有非零解的充分必要条件是系数行列式
| A-λE|=0 , (3)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询