根号a²-|a-b|=

怎么证明“根号下|a-b|>=根号下a-根号下b”在a>0,b>0的情况下恒成立知道要分类讨论,... 怎么证明“根号下|a-b|>=根号下a-根号下b”在a>0,b>0的情况下恒成立
知道要分类讨论,
展开
 我来答
本歌袭俊郎
2020-05-10 · TA获得超过1174个赞
知道小有建树答主
回答量:1721
采纳率:100%
帮助的人:8.2万
展开全部
应该是√|a-b|≥|√a-√b|吧?
因为不等式中,a、b对称,所以不妨假设a≥b
那么(√|a-b|)²=a-b;(|√a-√b|)²=a+b-2√ab.
那么(√|a-b|)²-(|√a-√b|)²=(a-b)-(a+b-2√ab)=-2(b-√ab)=-2√b(√b-√a)
=2√b(√a-√b)
因为假设a≥b,所以√a-√b≥0
所以2√b(√a-√b)≥0
所以(√|a-b|)²≥(|√a-√b|)²
所以√|a-b|≥|√a-√b|
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式