Python和R语言的区别
Python和R语言的区别数据挖掘技术日趋成熟和复杂,随着互联网发展以及大批海量数据的到来,之前传统的依靠spss、SAS等可视化工具实现数据...
Python和R语言的区别 数据挖掘技术日趋成熟和复杂,随着互联网发展以及大批海量数据的到来,之前传统的依靠spss、SAS等可视化工具实现数据
展开
展开全部
如下:
Python入门简单,而R则相对比较难一些。R做文本挖掘现在还有点弱,当然优点在于函数都给你写好了,你只需要知道参数的形式就行了,有时候即使参数形式不对,R也能"智能地”帮你适应。这种简单的软件适合想要专注于业务的人。
Python几乎都可以做,函数比R多,比R快。它是一门语言,R更像是一种软件,所以python更能开发出flexible的算法。
Python适合处理大量数据,而R则在这方面有很多力不从心,当然这么说的前提是对于编程基础比较一般的童鞋,对于大牛来说,多灵活运用矢量化编程的话,R的速度也不会太差。
介绍
Python和R本身在数据分析和数据挖掘方面都有比较专业和全面的模块,很多常用的功能,比如矩阵运算、向量运算等都有比较高级的用法,所以使用起来产出比大。
这两门语言对于平台方面适用性比较广,linux、window都可以使用,并且代码可移植性还算不错的。对于学数理统计的人来说,应该大多用过MATLAB以及mintab等工具,Python和R比较贴近这些常用的数学工具,使用起来有种亲切感。
2020-09-29 · 专注大学生职业技能培训在线教育品牌
关注
展开全部
Python和R语言的区别
数据挖掘技术日趋成熟和复杂,随着互联网发展以及大批海量数据的到来,之前传统的依靠spss、SAS等可视化工具实现数据挖掘建模已经越来越不能满足日常需求,依据美国对数据科学家(datascientist)的要求,想成为一名真正的数据科学家,编程实现算法以及编程实现建模已经是必要条件;目前很多从事数据挖掘工作的人,大多都是出身非计算机专业,本身对编程基础比较低,所以找到一门快速上手而又高效的编程语言是至关重要的,好的工具和编程语言可以起到事半功倍的效果。
目前在数据挖掘算法方面用的最多的编程语言有:Java、C++、C、Python、R等等
由于笔者本身属于数理统计出身,复杂而高级的语言对我来说性价比并不高,所以想从头对Java、C++、C开始学起,浪费的时间和精力与收获明显不成正比。所以Python和R语言成了最佳选择。对于同样和我背景相似的数据从业人员,我强烈推荐从这两者选择其一。
原因有三:
第一:Python和R本身在数据分析和数据挖掘方面都有比较专业和全面的模块,很多常用的功能,比如矩阵运算、向量运算等都有比较高级的用法,所以使用起来产出比大;
第二:这两门语言对于平台方面适用性比较广,linux、window都可以使用,并且代码可移植性还算不错的。
第三:对于学数理统计的人来说,应该大多用过MATLAB以及mintab等工具,Python和R比较贴近这些常用的数学工具,使用起来有种亲切感
至于Python和R两者如何选择,本人有点粗浅认识:
这两个工具都很方便,不需要非常高深的编程能力,都适合算法开发,有大量的package供你使用。
Python入门简单,而R则相对比较难一些(纯个人感觉,依据每个人之前的经验,可能不同的体验)。
R做文本挖掘现在还有点弱,当然它的优点在于函数都给你写好了,你只需要知道参数的形式就行了,有时候即使参数形式不对,R也能“智能地”帮你适应。这种简单的软件适合想要专注于业务的人。
Python几乎都可以做,函数比R多,比R快。它是一门语言,R更像是一种软件,所以python更能开发出flexible的算法。
Python适合处理大量数据,而R则在这方面有很多力不从心,当然这么说的前提是对于编程基础比较一般的童鞋,对于大牛来说,多灵活运用矢量化编程的话,R的速度也不会太差。
论性能,Python介于C/C++/Java这些高级语言与R语言之间,虽然性能不及那些高级语言,但是一般日常的数据用Python基本都能实现,对于性能要求不挑剔的人来说,足够了
python 你需要安装numpy,pandas,scipy,cython,statsmodels,matplotlib 等一系列的程序包,还需要安装ipython交互环境,单独用python直接做计量分析统计函数是没有函数支持的;R是基于统计分析的,性能和效率上要略逊于python。R的优势在于统计学和数据计算和分析上要优越于python。
Python语言编程的代码可读性高,整体美观,属于简单粗暴性质的,短时间内少量代码可实现复杂功能;R的语法很奇怪,各种包并不遵守语法规范,导致使用起来经常感觉蛋疼;R程序最终看起来没有Python那么简洁美观。
从全面性方面,我认为Python的确胜过R。无论是对其他语言的调用,和数据源的连接、读取,对系统的操作,还是正则表达和文字处理,Python都有着明显优势。毕竟,python本身是作为一门计算机编程语言出现的,而R本身只是源于统计计算。所以从语言的全面性来说,两者差异显著。
python是machine learning领域的人用的较多。据我所知,做marketing research, econometrics, statistics的人几乎没有用python的
当然了,现在学编程比以前可简单了多了。有句话不是这么说的么,“我不生产代码,我只是stackoverflow的搬运工”。。。
以上仅仅是个人感悟,如表述不当,欢迎指出,拍砖的手下留情哦
数据挖掘技术日趋成熟和复杂,随着互联网发展以及大批海量数据的到来,之前传统的依靠spss、SAS等可视化工具实现数据挖掘建模已经越来越不能满足日常需求,依据美国对数据科学家(datascientist)的要求,想成为一名真正的数据科学家,编程实现算法以及编程实现建模已经是必要条件;目前很多从事数据挖掘工作的人,大多都是出身非计算机专业,本身对编程基础比较低,所以找到一门快速上手而又高效的编程语言是至关重要的,好的工具和编程语言可以起到事半功倍的效果。
目前在数据挖掘算法方面用的最多的编程语言有:Java、C++、C、Python、R等等
由于笔者本身属于数理统计出身,复杂而高级的语言对我来说性价比并不高,所以想从头对Java、C++、C开始学起,浪费的时间和精力与收获明显不成正比。所以Python和R语言成了最佳选择。对于同样和我背景相似的数据从业人员,我强烈推荐从这两者选择其一。
原因有三:
第一:Python和R本身在数据分析和数据挖掘方面都有比较专业和全面的模块,很多常用的功能,比如矩阵运算、向量运算等都有比较高级的用法,所以使用起来产出比大;
第二:这两门语言对于平台方面适用性比较广,linux、window都可以使用,并且代码可移植性还算不错的。
第三:对于学数理统计的人来说,应该大多用过MATLAB以及mintab等工具,Python和R比较贴近这些常用的数学工具,使用起来有种亲切感
至于Python和R两者如何选择,本人有点粗浅认识:
这两个工具都很方便,不需要非常高深的编程能力,都适合算法开发,有大量的package供你使用。
Python入门简单,而R则相对比较难一些(纯个人感觉,依据每个人之前的经验,可能不同的体验)。
R做文本挖掘现在还有点弱,当然它的优点在于函数都给你写好了,你只需要知道参数的形式就行了,有时候即使参数形式不对,R也能“智能地”帮你适应。这种简单的软件适合想要专注于业务的人。
Python几乎都可以做,函数比R多,比R快。它是一门语言,R更像是一种软件,所以python更能开发出flexible的算法。
Python适合处理大量数据,而R则在这方面有很多力不从心,当然这么说的前提是对于编程基础比较一般的童鞋,对于大牛来说,多灵活运用矢量化编程的话,R的速度也不会太差。
论性能,Python介于C/C++/Java这些高级语言与R语言之间,虽然性能不及那些高级语言,但是一般日常的数据用Python基本都能实现,对于性能要求不挑剔的人来说,足够了
python 你需要安装numpy,pandas,scipy,cython,statsmodels,matplotlib 等一系列的程序包,还需要安装ipython交互环境,单独用python直接做计量分析统计函数是没有函数支持的;R是基于统计分析的,性能和效率上要略逊于python。R的优势在于统计学和数据计算和分析上要优越于python。
Python语言编程的代码可读性高,整体美观,属于简单粗暴性质的,短时间内少量代码可实现复杂功能;R的语法很奇怪,各种包并不遵守语法规范,导致使用起来经常感觉蛋疼;R程序最终看起来没有Python那么简洁美观。
从全面性方面,我认为Python的确胜过R。无论是对其他语言的调用,和数据源的连接、读取,对系统的操作,还是正则表达和文字处理,Python都有着明显优势。毕竟,python本身是作为一门计算机编程语言出现的,而R本身只是源于统计计算。所以从语言的全面性来说,两者差异显著。
python是machine learning领域的人用的较多。据我所知,做marketing research, econometrics, statistics的人几乎没有用python的
当然了,现在学编程比以前可简单了多了。有句话不是这么说的么,“我不生产代码,我只是stackoverflow的搬运工”。。。
以上仅仅是个人感悟,如表述不当,欢迎指出,拍砖的手下留情哦
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2022-07-27 · 百度认证:北京一天天教育科技有限公司官方账号,教育领域创作者
关注
展开全部
第一:概念不同
Python是一种跨平台的计算机程序设计语言。 是一个高层次的结合了解释性、编译性、互动性和面向对象的脚本语言。最初被设计用于编写自动化脚本(shell),随着版本的不断更新和语言新功能的添加,越多被用于独立的、大型项目的开发。
R是用于统计分析、绘图的语言和操作环境。R是属于GNU系统的一个自由、免费、源代码开放的软件,它是一个用于统计计算和统计制图的优秀工具。
第二:数据结构不同
R语言数据结构简单,主要包含向量一维、多维数组二维时为矩阵、列表非结构化数据、数据框结构化数据。
Python数据结构丰富,包含更丰富的数据结构来实现数据更精准的访问和内存控制,多维数组。
第三:用途不同
R语言是一个用于统计计算和统计制图的优秀工具。
自Python由Guido van Rossum于1989年底发明创建以来,基于此项技术的网站和软件项目已经有数千个。python由于其独特性,使其在各种编程语言中脱颖而出,在全世界拥有大量用户它的程序员。
第四、特点不同
R语言是专门为统计和数据分析开发的语言,各种功能和函数琳琅满目,其中成熟稳定的一抓一把。体积轻便,运行起来系统负担也小。
Python语言是在ABC教学语言的基础上发展出来的;遗憾的是,ABC语言虽然非常强大,但却没有普及应用,Guido认为是它不开放导致的。
Python是一种跨平台的计算机程序设计语言。 是一个高层次的结合了解释性、编译性、互动性和面向对象的脚本语言。最初被设计用于编写自动化脚本(shell),随着版本的不断更新和语言新功能的添加,越多被用于独立的、大型项目的开发。
R是用于统计分析、绘图的语言和操作环境。R是属于GNU系统的一个自由、免费、源代码开放的软件,它是一个用于统计计算和统计制图的优秀工具。
第二:数据结构不同
R语言数据结构简单,主要包含向量一维、多维数组二维时为矩阵、列表非结构化数据、数据框结构化数据。
Python数据结构丰富,包含更丰富的数据结构来实现数据更精准的访问和内存控制,多维数组。
第三:用途不同
R语言是一个用于统计计算和统计制图的优秀工具。
自Python由Guido van Rossum于1989年底发明创建以来,基于此项技术的网站和软件项目已经有数千个。python由于其独特性,使其在各种编程语言中脱颖而出,在全世界拥有大量用户它的程序员。
第四、特点不同
R语言是专门为统计和数据分析开发的语言,各种功能和函数琳琅满目,其中成熟稳定的一抓一把。体积轻便,运行起来系统负担也小。
Python语言是在ABC教学语言的基础上发展出来的;遗憾的是,ABC语言虽然非常强大,但却没有普及应用,Guido认为是它不开放导致的。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询