二次函数f(x,y)在点(x0,y0)处的偏导数存在是f(x,y)在该点连续的
一个关于偏导数的问题二元函数f(x,y):当(x,y)≠(0,0)时f(x,y)=(xy)/(x^2+y^2)当(x,y)=(0,0)时f(x,y)=0问在点(0,0)处...
一个关于偏导数的问题
二元函数f(x,y) :
当(x,y)≠(0,0)时f(x,y)=(xy)/(x^2+y^2)
当(x,y)=(0,0)时f(x,y)=0
问在点(0,0)处f(x,y)是否连续,偏导数是否存在?请说明原因,
注:^表示次方...x^2即表示x的二次方
二元函数的是否连续和导数是否存在是没有关系的...也就是说连续不一定可导,可导不一定连续..不能根据不连续推出不可导...和一元函数不同... 展开
二元函数f(x,y) :
当(x,y)≠(0,0)时f(x,y)=(xy)/(x^2+y^2)
当(x,y)=(0,0)时f(x,y)=0
问在点(0,0)处f(x,y)是否连续,偏导数是否存在?请说明原因,
注:^表示次方...x^2即表示x的二次方
二元函数的是否连续和导数是否存在是没有关系的...也就是说连续不一定可导,可导不一定连续..不能根据不连续推出不可导...和一元函数不同... 展开
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询