(x^x)'=(x^x)(lnx+1)
求法:令x^x=y
两边取对数:lny=xlnx
两边求导,应用复合函数求导法则:
(1/y)y'=lnx+1
y'=y(lnx+1)
即:y'=(x^x)(lnx+1)
导数的意义:
不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。
对于可导的函数f(x),x↦f'(x)也是一个函数,称作f(x)的导函数(简称导数)。寻找已知的函数在某点的导数或其导函数的过程称为求导。