傅里叶级数的和函数是分段函数,法国数学家傅里叶发现,任何周期函数都可以用
正弦函数和余弦函数构成的无穷级数来表示,后世称傅里叶级数为一种特殊的三角级数,根据
欧拉公式,三角函数又能化成指数形式,也称傅立叶级数为一种指数级数。
法国数学家J·-B·-J·傅里叶在研究
偏微分方程的边值问题时提出。从而极大地推动了偏微分方程理论的发展。在中国,程民德最早系统研究多元三角级数与多元傅里叶级数。他首先证明多元三角级数球形和的唯一性定理,并揭示了多元傅里叶级数的里斯·博赫纳球形平均的许多特性。傅里叶级数曾极大地推动了偏微分方程理论的发展。在数学物理以及工程中都具有重要的应用。