求微分方程xy′′=y′( lny′+1-lnx) 满足y(1)=2,y′(1)=e的解

 我来答
科创17
2022-07-04 · TA获得超过6081个赞
知道小有建树答主
回答量:2846
采纳率:100%
帮助的人:218万
展开全部
方程改为xy''--y'=y'ln(y'/x),同除以x^2得(y'/x)'=(y'/x)*ln(y'/x)*1/x,令y'/x=z,得dz/dx=(zlnz)/x,dz/(zlnz)=dx/xln(lnz)=lnx+C1,lnz=Cx,ln(y'/x)=Cx.代入y'(1)=e得C=1,于是ln(y'x)=xy'=xe^x,y=xe^x--e^x+D.再代入y...
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式