幂指函数求极限取对数法
1个回答
展开全部
^lim(x->0)[(e^x+x)^(1/x)]
=lim(x->0){e^[ln(e^x+x)/x]} (应用对数性质取对数)
=e^{lim(x->0)[ln(e^x+x)/x]} (应用初等函数的连续性)
=e^{lim(x->0)[(e^x+1)/(e^x+x)]} (0/0型极限,应用罗比达法则)
=e^[(1+1)/(1+0)]
=e^2
=lim(x->0){e^[(ln(a^x+b^x+c^x)-ln3)/x]} (应用对数性质取对数)
=e^{lim(x->0)[(ln(a^x+b^x+c^x)-ln3)/x]} (应用初等函数的连续性)
=e^{lim(x->0)[(a^xln│a│+b^xln│b│+c^xln│c│)/(a^x+b^x+c^x)]} (0/0型极限,应用罗比达法则)
=e^[(ln│a│+ln│b│+ln│c│)/(1+1+1)]}
=e^[ln│abc│/3]
=(abc)^(1/3).
=lim(x->0){e^[ln(e^x+x)/x]} (应用对数性质取对数)
=e^{lim(x->0)[ln(e^x+x)/x]} (应用初等函数的连续性)
=e^{lim(x->0)[(e^x+1)/(e^x+x)]} (0/0型极限,应用罗比达法则)
=e^[(1+1)/(1+0)]
=e^2
扩展资料
lim(x->0){[(a^x+b^x+c^x)/3]^(1/x)}=lim(x->0){e^[(ln(a^x+b^x+c^x)-ln3)/x]} (应用对数性质取对数)
=e^{lim(x->0)[(ln(a^x+b^x+c^x)-ln3)/x]} (应用初等函数的连续性)
=e^{lim(x->0)[(a^xln│a│+b^xln│b│+c^xln│c│)/(a^x+b^x+c^x)]} (0/0型极限,应用罗比达法则)
=e^[(ln│a│+ln│b│+ln│c│)/(1+1+1)]}
=e^[ln│abc│/3]
=(abc)^(1/3).
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
北京埃德思远电气技术咨询有限公司
2023-08-25 广告
2023-08-25 广告
"整定计算的工作步骤,大致如下:1.确定整定方案所适应的系统情况。2.与调度部门共同确定系统的各种运行方式。3.取得必要的参数与资料(保护图纸,设备参数等)。4.结合系统情况,确定整定计算的具体原则。5.进行短路计算。6.进行保护的整定计算...
点击进入详情页
本回答由北京埃德思远电气技术咨询有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询