二项分布的期望和方差公式推导

 我来答
小先又哒哒
2022-12-11 · TA获得超过1011个赞
知道大有可为答主
回答量:1.6万
采纳率:99%
帮助的人:251万
展开全部

二项分布的期望和方差公式推导如下:

1、二项分布求期望:

公式:如果r~ B(r,p),那么E(r)=np。

示例:沿用上述猜小球在哪个箱子的例子,求猜对这四道题目的期望。E(r) = np = 4×0.25 = 1 (个),所以这四道题目预计猜对1道。

2、二项分布求方差:

公式:如果r~ B(r,p),那么Var(r)=npq。

示例:沿用上述猜小球在哪个箱子的例子,求猜对这四道题目的方差。

Var(r)=npq = 4×0.25×0.75=0.75。

扩展资料:

由二项式分布的定义知,随机变量X是n重伯努利实验中事件A发生的次数,且在每次试验中A发生的概率为p。因此,可以将二项式分布分解成n个相互独立且以p为参数的(0-1)分布随机变量之和。

设随机变量X(k)(k=1,2,3...n)服从(0-1)分布,则X=X(1)+X(2)+X(3)....X(n)。

因X(k)相互独立,所以期望:E(x)=E[X(1)+X(2)+X (3).....+ X(n)] = np。

方差:D(x)=D[X(1)+X(2)+X(3)....+ X(n)]= np(1- p)。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式