不定积分∫x^2/(x^2+1)^2dx怎么求?
展开全部
令 x = tant, 则dx = (sect)^2dt , 得
I = ∫[x^2/(x^2+1)^2]dx = ∫[(tant)^2(sect)^2dt/(sect)^4]
= ∫(tant)^2(cost)^2dt = ∫(sint)^2dt = (1/2)∫(1-cos2t)dt
= (1/2)t - (1/4)sin2t + C = (1/2)t - (1/2)sintcost + C
= (1/2)arctanx - (1/2)x/(x^2+1) + C
I = ∫[x^2/(x^2+1)^2]dx = ∫[(tant)^2(sect)^2dt/(sect)^4]
= ∫(tant)^2(cost)^2dt = ∫(sint)^2dt = (1/2)∫(1-cos2t)dt
= (1/2)t - (1/4)sin2t + C = (1/2)t - (1/2)sintcost + C
= (1/2)arctanx - (1/2)x/(x^2+1) + C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询