怎么证明一个数是无理数?

 我来答
风林网络手游平台
2022-11-15 · 百度认证:四川风林网络科技有限公司官方账号
风林网络手游平台
向TA提问
展开全部

例子:证明根号2是无理数: 

证明:若根号2是有理数,则设它等于m/n(m、n为不为零的整数,m、n互质) 

所以(m/n)^2=根号2^2=2 

所以m^2/n^2=2 

所以m^2=2*n^2 

所以m^2是偶数,设m=2k(k是整数) 

所以m^2=4k^2=2n^2 

所以n^2=2k^2 

所以n是偶数 

因为m、n互质 

所以矛盾,即根号2不是有理数,它是无理数。

扩展资料:

无理数的定义:

在数学中,无理数是所有不是有理数字的实数,后者是由整数的比率(或分数)构成的数字。当两个线段的长度比是无理数时,线段也被描述为不可比较的,这意味着它们不能“测量”,即没有长度(“度量”)。

常见的无理数有:圆周长与其直径的比值,欧拉数e,黄金比例φ等等。

可以看出,无理数在位置数字系统中表示(例如,以十进制数字或任何其他自然基础表示)不会终止,也不会重复,即不包含数字的子序列。

例如,数字π的十进制表示从3.141592653589793开始,但没有有限数字的数字可以精确地表示π,也不重复。

必须终止或重复的有理数字的十进制扩展的证据不同于终止或重复的十进制扩展必须是有理数的证据,尽管基本而不冗长,但两种证明都需要一些工作。数学家通常不会把“终止或重复”作为有理数概念的定义。

无理数也可以通过非终止的连续分数来处理。

无理数是指实数范围内不能表示成两个整数之比的数。简单的说,无理数就是10进制下的无限不循环小数,如圆周率、根号2等。

而有理数由所有分数,整数组成,总能写成整数、有限小数或无限循环小数,并且总能写成两整数之比,如21/7等。

参考资料来源:百度百科-无理数

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式