急。一个非齐次二阶常微分方程求解!!!
2个回答
展开全部
x(x-1)y''+(3x-2)y'+y=2x 等价于
[x(x-1)y' + (x-1)y]' =2x
x(x-1)y' + (x-1)y = x^2 +C0
化为一阶线性微分方程
y' +(1/x)y = (x^2 +C0)/[x(x-1)]
套用公式
e(∫1/xdx) =x
y = (1/x)∫(x^2 +C0)/[x(x-1)]*x dx
= (1/x)∫(x^2 +C0)/(x-1) dx
其中(x^2 +C0)/(x-1) = (x+1) + (C0+1)/(x-1) =(x+1) + C1/(x-1)
y= (1/x)[(x+1)^2/2 +C1*ln(x-1) +C2]
[x(x-1)y' + (x-1)y]' =2x
x(x-1)y' + (x-1)y = x^2 +C0
化为一阶线性微分方程
y' +(1/x)y = (x^2 +C0)/[x(x-1)]
套用公式
e(∫1/xdx) =x
y = (1/x)∫(x^2 +C0)/[x(x-1)]*x dx
= (1/x)∫(x^2 +C0)/(x-1) dx
其中(x^2 +C0)/(x-1) = (x+1) + (C0+1)/(x-1) =(x+1) + C1/(x-1)
y= (1/x)[(x+1)^2/2 +C1*ln(x-1) +C2]
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询