初三几何题,求详细解答过程。
展开全部
由对称性,不妨设<CBA = x <= 45 (这里角度的单位都是度,下面就不写了)
设圆的半径是r
则
AC = 2r * sin(x)
BC = 2r * cos(x)
AC + BC = 2r * (cos(x) + sin(x))……(1)
连接CO和DO
则<OCB = <CBO = x
由AB是直径可知<ACB = 90
又由CD是<ACB的平分线可知<ACD = <DCB = 45
所以<OCD = <DCB - <BCO = 45 -x
等腰三角形COD中
OC = OD = r
<COD = 180 - 2(<OCD) = 90 + 2x
则,由余弦定理得
CD^2
= r^2 + r^2 -2r^2cos(90+2x)
= 2r^2 * (1-cos(90+2x))
= 2r^2 * (1+cos(90-2x)) ……这一步根据cos(x)关于x=90轴对称
= 2r^2 * (1+sin(2x))……这一步根据在0<=x<=90的时候,cos(x) = sin(90-x)
所以
CD
= 根号(2) r 根号(1+sin(2x))
= 根号(2) r 根号( cos(x)cos(x) + sin(x)sin(x) + 2sin(x)cos(x) )……这一步根据1=sin^2+cos^2和sin(2x) = 2sin(x)cos(x)
= 根号(2) r 根号( (sin(x)+cos(x))^2 )……由0<=x<=45可知cos(x)+sin(x) > 0
= 根号(2) r (sin(x)+cos(x))……(2)
比较(1)和(2)可以得到
AC + BC = 根号(2)CD
设圆的半径是r
则
AC = 2r * sin(x)
BC = 2r * cos(x)
AC + BC = 2r * (cos(x) + sin(x))……(1)
连接CO和DO
则<OCB = <CBO = x
由AB是直径可知<ACB = 90
又由CD是<ACB的平分线可知<ACD = <DCB = 45
所以<OCD = <DCB - <BCO = 45 -x
等腰三角形COD中
OC = OD = r
<COD = 180 - 2(<OCD) = 90 + 2x
则,由余弦定理得
CD^2
= r^2 + r^2 -2r^2cos(90+2x)
= 2r^2 * (1-cos(90+2x))
= 2r^2 * (1+cos(90-2x)) ……这一步根据cos(x)关于x=90轴对称
= 2r^2 * (1+sin(2x))……这一步根据在0<=x<=90的时候,cos(x) = sin(90-x)
所以
CD
= 根号(2) r 根号(1+sin(2x))
= 根号(2) r 根号( cos(x)cos(x) + sin(x)sin(x) + 2sin(x)cos(x) )……这一步根据1=sin^2+cos^2和sin(2x) = 2sin(x)cos(x)
= 根号(2) r 根号( (sin(x)+cos(x))^2 )……由0<=x<=45可知cos(x)+sin(x) > 0
= 根号(2) r (sin(x)+cos(x))……(2)
比较(1)和(2)可以得到
AC + BC = 根号(2)CD
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询