高中数学 急急急 求得一问是一问 请专业回答 详细回答 10
已知椭圆C:a²分之x²+b²分之y平方=1(a>b>0)的上顶点为p(0,1),过C的的焦点切垂直长轴的炫长为1,若有一菱形ABCD的顶点...
已知椭圆C:a²分之x²+b²分之y平方=1(a>b>0)的上顶点为p(0,1),过C的的焦点切垂直长轴的炫长为1,若有一菱形ABCD的顶点为A,C在椭圆C上,该菱形对角线BD所在的直线斜率为-1.
1.求椭圆C的方程
2.当直线BD过(1,0)时,求直线AC的方程 展开
1.求椭圆C的方程
2.当直线BD过(1,0)时,求直线AC的方程 展开
1个回答
展开全部
解:
1)
椭圆C的方程为x²/a²+y²/b²=1(a>b>0)
因为顶点p坐标为(0,1),代入方程中可得:1/b²=1,所以b=1
c²=a²-b²=a²-1
所以两焦点为F1(-(√a²-1),0),F2(√(a²-1),0)
我们取F2作垂直长轴的弦(取哪个焦点都一样),过此弦的直线方程为x=√(a²-1)
与椭圆方程x²/a²+y²=1联立起来,可得:
(a²-1)/a²+y²=1
y²=1/a²
y=±1/a
所以弦长为2·(1/a)=1,得a=2
所以椭圆方程为:
x²/4+y²=1
2)
因为BD所在直线斜率为-1,且经过点(1,0)
设BD所在直线方程为y=-x+m
则0=-1+m,得m=1
所以BD方程为:
y=-x+1
因为AC⊥BD,所以AC所在直线的斜率为1
设AC方程为y=x+n
与BD方程联立得交点坐标为((1-n)/2,(1+n)/2),也为线段AC的中点坐标。
因为点A,C在椭圆上,将AC方程与椭圆方程联立得:
x²/4+(x+n)²=1
化简得:
5x²+8nx+4n²-1=0
设A(x1,y1),C(x2,y2),则x1,x2为上述方程的根
所以x1+x2=-8n/5,x1x2=(4n²-1)/5
因为AC中点为((1-n)/2,(1+n)/2)
所以x1+x2=2·(1-n)/2=1-n
即:-8n/5=1-n
得:n=-5/3
所以直线AC方程为:
y=x-5/3
1)
椭圆C的方程为x²/a²+y²/b²=1(a>b>0)
因为顶点p坐标为(0,1),代入方程中可得:1/b²=1,所以b=1
c²=a²-b²=a²-1
所以两焦点为F1(-(√a²-1),0),F2(√(a²-1),0)
我们取F2作垂直长轴的弦(取哪个焦点都一样),过此弦的直线方程为x=√(a²-1)
与椭圆方程x²/a²+y²=1联立起来,可得:
(a²-1)/a²+y²=1
y²=1/a²
y=±1/a
所以弦长为2·(1/a)=1,得a=2
所以椭圆方程为:
x²/4+y²=1
2)
因为BD所在直线斜率为-1,且经过点(1,0)
设BD所在直线方程为y=-x+m
则0=-1+m,得m=1
所以BD方程为:
y=-x+1
因为AC⊥BD,所以AC所在直线的斜率为1
设AC方程为y=x+n
与BD方程联立得交点坐标为((1-n)/2,(1+n)/2),也为线段AC的中点坐标。
因为点A,C在椭圆上,将AC方程与椭圆方程联立得:
x²/4+(x+n)²=1
化简得:
5x²+8nx+4n²-1=0
设A(x1,y1),C(x2,y2),则x1,x2为上述方程的根
所以x1+x2=-8n/5,x1x2=(4n²-1)/5
因为AC中点为((1-n)/2,(1+n)/2)
所以x1+x2=2·(1-n)/2=1-n
即:-8n/5=1-n
得:n=-5/3
所以直线AC方程为:
y=x-5/3
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询