已知,如图,△ABC内接于⊙O,且AB=AC=13,BC=24,PA‖BC,割线PBD过圆心,交⊙O于另一个点D,连接CD。

(1)求证:PA是⊙O的切线;(2)求:⊙O的半径及CD的长。... (1)求证:PA是⊙O的切线;
(2)求:⊙O的半径及CD的长。
展开
龙舟5374242
2011-01-14 · TA获得超过1041个赞
知道小有建树答主
回答量:260
采纳率:0%
帮助的人:490万
展开全部
(1)设AH垂直BC于点H,则AH是BC的垂直平分线,所以由OB=OC可知O在AH上
又OH垂直BC,BC平行PA,所以OH垂直PA,A又是与圆的交点
所以A一定是切点,PA是切线

(2)利用△ABC就能求出半径,BH=12
r^2=(5-r)^2+12^2
r=13/√10

另外BD是直径,所以∠C=90
而tan∠B=(5-r)/12=(5-13/√10)/12
所以CD=24×tan∠B=(5-13/√10)×2。
pangxizi
2012-12-30
知道答主
回答量:10
采纳率:0%
帮助的人:1.5万
展开全部
(1)证明:连接OA,设OA交BC于G.
∵AB=AC,


AB
=

AC
∵OA过圆心O,
∴OA⊥BC.
∵PA∥BC,
∴OA⊥PA.
∴PA是⊙O的切线.(2分)
(2)解:∵AB=AC,OA⊥BC,
∴BG=
1
2
BC=12.
∵AB=13,
∴AG=
132-122
=5.(3分)
设⊙O的半径为R,则OG=R-5.
在Rt△OBG中,∵OB2=BG2+OG2,
∴R2=122+(R-5)2.
解得,R=16.9.(5分)
∴OG=11.9.
∵BD是⊙O的直径,
∴DC⊥BC,又OG⊥BC,
∴OG∥DC,又O是BD中点,
∴OG是△BCD的中位线.
∴DC=2OG=23.8.(7分)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式