
已知函数f(x)=Asin(wx+φ)+A在x属于0,7π内取得一个最大值和最小值,且当x=π,y最大3,x=6π,y最小为-3
(1)求此函数解析式(2)是否存在实数m,满足不等式:Asin(ω√(-m^2+2m+3)+φ)>Asin(ω√(-m^2+4)+φ?若存在,求出m的值(或范围),若不存...
(1)求此函数解析式 (2)是否存在实数m,满足不等式:Asin(ω√(-m^2+2m+3)+φ)>Asin(ω√(-m^2+4)+φ?若存在,求出m的值(或范围),若不存在,请说明理由
展开
1个回答
展开全部
(1)A(>0)=3,周期2π/w=2(6π-π),w=1/5,当x=π时,取wx+φ=π/5+φ=π/2,得φ=3π/10,
此函数解析式为f(x)=3sin(x/5+3π/10)
(2)问题即是否存在实数m,满足不等式:sin{√[-(m-1)^2+4]/5+3π/10}>sin[√(-m^2+4)/5+3π/10]。
首先,-(m-1)^2+4>=0,-m^2+4>=0
即|m|<=2.|m-1|=2则-1=<m<=2,
当-1=<m<1/2时,0=>-m^2>-(m-1)^2>=-4,
-3π<3π/10=<√[-(m-1)^2+4]/5+3π/10<√(-m^2+4)/5+3π/10<=4/5+3π/10<2π,
f(x)在[-3π,2π]上递增,sin{√[-(m-1)^2+4]/5+3π/10}<sin[√(-m^2+4)/5+3π/10]
当1/2<m<=2时,-4=<-m^2<-(m-1)^2<=0,
2π>4/5+3π/10=>√[-(m-1)^2+4]/5+3π/10>√(-m^2+4)/5+3π/10>=3π/10>-3π,
f(x)在[-3π,2π]上递增,sin{√[-(m-1)^2+4]/5+3π/10}>sin[√(-m^2+4)/5+3π/10]
所以,存在实数m,满足不等式:sin{√[-(m-1)^2+4]/5+3π/10}>sin[√(-m^2+4)/5+3π/10],
m的取值范围为(1/2,2].
此函数解析式为f(x)=3sin(x/5+3π/10)
(2)问题即是否存在实数m,满足不等式:sin{√[-(m-1)^2+4]/5+3π/10}>sin[√(-m^2+4)/5+3π/10]。
首先,-(m-1)^2+4>=0,-m^2+4>=0
即|m|<=2.|m-1|=2则-1=<m<=2,
当-1=<m<1/2时,0=>-m^2>-(m-1)^2>=-4,
-3π<3π/10=<√[-(m-1)^2+4]/5+3π/10<√(-m^2+4)/5+3π/10<=4/5+3π/10<2π,
f(x)在[-3π,2π]上递增,sin{√[-(m-1)^2+4]/5+3π/10}<sin[√(-m^2+4)/5+3π/10]
当1/2<m<=2时,-4=<-m^2<-(m-1)^2<=0,
2π>4/5+3π/10=>√[-(m-1)^2+4]/5+3π/10>√(-m^2+4)/5+3π/10>=3π/10>-3π,
f(x)在[-3π,2π]上递增,sin{√[-(m-1)^2+4]/5+3π/10}>sin[√(-m^2+4)/5+3π/10]
所以,存在实数m,满足不等式:sin{√[-(m-1)^2+4]/5+3π/10}>sin[√(-m^2+4)/5+3π/10],
m的取值范围为(1/2,2].
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询