高数微分方程

xy'-ylny=0的通解,希望过程详细点... xy'-yln y=0的通解,希望过程详细点 展开
混子2024
2011-01-14 · TA获得超过9728个赞
知道大有可为答主
回答量:1844
采纳率:87%
帮助的人:898万
展开全部
dhy2603,你好:
这题太容易了,xy'-ylny=0 ①,两边再对x求一次导得到y'+xy''-y'lny-yy'/y=0,即有
xy''-y'lny=0 ②,联立两式得,ylny*y''/y'-y'lny=0③,可以开始讨论了,由第一式,可以得出可能有y'=0,此时由1知y=1,常函数。当y'≠0时,才有③,此时lny≠0,得到(yy''-y'^2)/y'=0 ④ 从而yy''-y'^2=0,得到只显含y的微分方程式,将④变形为 (y'^2-yy'')/y'^2=0,于是有(y/y')'=0,于中得y/y'=C,再倒过来变一次型,得到 y'/y=c,两边积分得lny=cx,则有y=e^(cx),此为通解,y=1也含在里面了。
富港检测技术(东莞)有限公司_
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发... 点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式