(1-ax^2)^1/4-1和x*Sinx是等价无穷小,求a
1个回答
展开全部
用罗必塔法则,对分子分母分别求导,然后趋于0 ,求 a , 使得比为1。
(1-ax^2)^1/4-1 求导得:(1/4) (1-ax^2)^(-3/4) (-2a)x
x --> 0 时,化为 -1/2 a x
x*Sinx 求导得:sinx + xcosx
x --> 0 时,化为 sinx + x --> 2x (因为 x 和 sinx 是等价无穷小)
所以,a = -4 时,(1-ax^2)^1/4-1和x*Sinx是等价无穷小。
比值的极限是 1 。
(1-ax^2)^1/4-1 求导得:(1/4) (1-ax^2)^(-3/4) (-2a)x
x --> 0 时,化为 -1/2 a x
x*Sinx 求导得:sinx + xcosx
x --> 0 时,化为 sinx + x --> 2x (因为 x 和 sinx 是等价无穷小)
所以,a = -4 时,(1-ax^2)^1/4-1和x*Sinx是等价无穷小。
比值的极限是 1 。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |