如图,已知△ABC中,∠ABC=90°,AB=BC,三角形的顶点在相互平行的三条直线l1,l2,l3上,且l1,l2之间的距
如图,已知△ABC中,∠ABC=90°,AB=BC,三角形的顶点在相互平行的三条直线l1,l2,l3上,且l1,l2之间的距离为2,l2,l3之间的距离为3,则AC的长是...
如图,已知△ABC中,∠ABC=90°,AB=BC,三角形的顶点在相互平行的三条直线l1,l2,l3上,且l1,l2之间的距离为2 , l2,l3之间的距离为3 ,则AC的长是 -----
展开
展开全部
解:
过A作AE⊥l3于E,过C作CF⊥l3于F,
则∠AEF=∠CFB=∠ABC=90°,
∴∠ABE+∠CBF=180°-90°=90°,
∠EAB+∠ABE=90°,
∴∠EAB=∠CBF,
∵在△AEB和△BFC中
∠EAB=∠CBF∠AEB=∠CFBAB=BC
,
∴△AEB≌△BFC(AAS),
∴AE=BF=2,BE=CF=2+1=3,
由勾股定理得:AB=BC=
22+32
=
13
,
由勾股定理得:AC=
(13)2+(13)2
=
26 ,
过A作AE⊥l3于E,过C作CF⊥l3于F,
则∠AEF=∠CFB=∠ABC=90°,
∴∠ABE+∠CBF=180°-90°=90°,
∠EAB+∠ABE=90°,
∴∠EAB=∠CBF,
∵在△AEB和△BFC中
∠EAB=∠CBF∠AEB=∠CFBAB=BC
,
∴△AEB≌△BFC(AAS),
∴AE=BF=2,BE=CF=2+1=3,
由勾股定理得:AB=BC=
22+32
=
13
,
由勾股定理得:AC=
(13)2+(13)2
=
26 ,
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:作AD⊥l3于D,作CE⊥l3于E,
∵∠ABC=90°,
∴∠ABD+∠CBE=90°
又∠DAB+∠ABD=90°
∴∠BAD=∠CBE
又AB=BC,∠ADB=∠BEC
∴△ABD≌△BCE
∴BE=AD=3
在Rt△BCE中,根据勾股定理,得BC=25+9=34,
在Rt△ABC中,根据勾股定理,得AC=34×2=68;
∵∠ABC=90°,
∴∠ABD+∠CBE=90°
又∠DAB+∠ABD=90°
∴∠BAD=∠CBE
又AB=BC,∠ADB=∠BEC
∴△ABD≌△BCE
∴BE=AD=3
在Rt△BCE中,根据勾股定理,得BC=25+9=34,
在Rt△ABC中,根据勾股定理,得AC=34×2=68;
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询