5个回答
展开全部
解题就是跟题目对话,跟命题人对话。这道题的命题意图主要考察向量的数量积运算与圆的切线长定理,着重考察最值的求法——判别式法,同时也考察学生综合运用数学知识解题的能力及运算能力。
【解析】图中第一步需要解释的有两点
第一点。向量公式:向量a·向量b=|a|•|b|•cos〈a,b〉(夹角)
第二点。PA=PB的原因:A,B为切点所以得到 ∠PAO ∠PBO为直角
△PAO △PBO 为直角三角形 且全等(相同斜边 相等的直角边)
或者切线长定理 :从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角
②三角形的余弦定理,例如三角形ABC中,A为内角,abc为对应的边,cosA=(b²+c²-a²)/2bc
③∵|PA|=|PB| ∴|PA|的平方可与分子PA•PB约去,分母为2PA²-AB²
④勾股定理:PA²=OP²-OA² ,OA=R=1
设直线AB与X轴的交点为M,有 AM²=OA²-OM²=1-d² ,AB=2AM
⑤化简④,再用均值不等式,公式:a²+b²≥2ab
⑥OA²=d•OP 射影定理
其实可以这样写,更加清楚
设PA=PB=X(x>0),∠APO=α,则∠APB=2α,有勾股定理得PO=根号(1+x^2),
sinα=1/根号(1+x^2),
向量PA·向量PB=|PA|·|PB|cos2α=x^2(1-sin^2α)={x^2(x^2-1)}/1+x^2=(x^4-x^2)/(1+x^2),令向量PA·向量PB=y,则y==(x^4-x^2)/(1+x^2),
即x^4-(1+y)x^2-y=0,由x^2是实数∴△={-(1+y)}^2-4×1×(-y)≥0,y^2+6y+1≥0
解得y≤-2√2-3或y≥-3+2√2
故(向量PA·向量PB)min=-3+2√2
好啦。大功告陈
很高兴又见到你
【解析】图中第一步需要解释的有两点
第一点。向量公式:向量a·向量b=|a|•|b|•cos〈a,b〉(夹角)
第二点。PA=PB的原因:A,B为切点所以得到 ∠PAO ∠PBO为直角
△PAO △PBO 为直角三角形 且全等(相同斜边 相等的直角边)
或者切线长定理 :从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角
②三角形的余弦定理,例如三角形ABC中,A为内角,abc为对应的边,cosA=(b²+c²-a²)/2bc
③∵|PA|=|PB| ∴|PA|的平方可与分子PA•PB约去,分母为2PA²-AB²
④勾股定理:PA²=OP²-OA² ,OA=R=1
设直线AB与X轴的交点为M,有 AM²=OA²-OM²=1-d² ,AB=2AM
⑤化简④,再用均值不等式,公式:a²+b²≥2ab
⑥OA²=d•OP 射影定理
其实可以这样写,更加清楚
设PA=PB=X(x>0),∠APO=α,则∠APB=2α,有勾股定理得PO=根号(1+x^2),
sinα=1/根号(1+x^2),
向量PA·向量PB=|PA|·|PB|cos2α=x^2(1-sin^2α)={x^2(x^2-1)}/1+x^2=(x^4-x^2)/(1+x^2),令向量PA·向量PB=y,则y==(x^4-x^2)/(1+x^2),
即x^4-(1+y)x^2-y=0,由x^2是实数∴△={-(1+y)}^2-4×1×(-y)≥0,y^2+6y+1≥0
解得y≤-2√2-3或y≥-3+2√2
故(向量PA·向量PB)min=-3+2√2
好啦。大功告陈
很高兴又见到你
展开全部
PA*PB=PA²*COS∠APB ①
=PA²*(PA²+PB²-AB²)/(2*PA*PB) ②
=PA²-AB²/2 ③
=OP²-1-1/2*4*(1²-d²) ④
=OP²+2d²-3≥2√(OP²*2d²)-3 [√表示平方根] ⑤
≥2√2-3 ⑥
OA²=d*OP=1 ⑦
根据圆的切线性质,得到 PA=PB
再根据向量性质得到①
根据余弦定理,得 AB²=PA²+AB²-2*PA*PB*COS∠APB
∴得到COS∠APB =(PA²+AB²-AB²)/(2*PA*PB)
从而得到 ②
化简得到 ③
根据勾股定理,得到 PA²=OP²-OA²=OP²-1
设AB与OP相交于C点
AB²=(2AC)²=4AC²
又AC²=OA²-d²=1²-d²
AB²=4*(1²-d²)
从而得到 ④
根据不等式性质有 a²+b²≥2√ab [√表示平方根]
因此 OP²+2d²≥2√(OP²*2d²)
从而得到 ⑤
在直角△AOC与AOP中
∠AOC=AOP
∴△AOC与AOP相似
有 OA/OC=OP/OA
即 OA²=OC*OP=d*OP
∵OA=1
∴d*OP=1
从而得到 ⑦
代入 ⑤化简得到⑥。
=PA²*(PA²+PB²-AB²)/(2*PA*PB) ②
=PA²-AB²/2 ③
=OP²-1-1/2*4*(1²-d²) ④
=OP²+2d²-3≥2√(OP²*2d²)-3 [√表示平方根] ⑤
≥2√2-3 ⑥
OA²=d*OP=1 ⑦
根据圆的切线性质,得到 PA=PB
再根据向量性质得到①
根据余弦定理,得 AB²=PA²+AB²-2*PA*PB*COS∠APB
∴得到COS∠APB =(PA²+AB²-AB²)/(2*PA*PB)
从而得到 ②
化简得到 ③
根据勾股定理,得到 PA²=OP²-OA²=OP²-1
设AB与OP相交于C点
AB²=(2AC)²=4AC²
又AC²=OA²-d²=1²-d²
AB²=4*(1²-d²)
从而得到 ④
根据不等式性质有 a²+b²≥2√ab [√表示平方根]
因此 OP²+2d²≥2√(OP²*2d²)
从而得到 ⑤
在直角△AOC与AOP中
∠AOC=AOP
∴△AOC与AOP相似
有 OA/OC=OP/OA
即 OA²=OC*OP=d*OP
∵OA=1
∴d*OP=1
从而得到 ⑦
代入 ⑤化简得到⑥。
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:设PA与PO的夹角为a,则|PA|=|PB|=1 tanα
y= PA • PB =| PA || PB |COS2α
=1 (tanα)2 •cos2α=cos2α sin2α •cos2α
=1+cos2α 1-cos2α •cos2α
记cos2a=u.则y=u(u+1) 1-u =(-u-2)+2 1-u =-3+(1-u)+2 1-u
≥-3+2 2
即 PA • PB 的最小值为-3+2 2
故答案为:-3+2 2
y= PA • PB =| PA || PB |COS2α
=1 (tanα)2 •cos2α=cos2α sin2α •cos2α
=1+cos2α 1-cos2α •cos2α
记cos2a=u.则y=u(u+1) 1-u =(-u-2)+2 1-u =-3+(1-u)+2 1-u
≥-3+2 2
即 PA • PB 的最小值为-3+2 2
故答案为:-3+2 2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
楼主写题目时向量的箭头注意标号,第2行的
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
=76
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询