在正方体ABCD-A1B1C1D1,G为CC1的中点,O为底面ABCD的中心。求证:A1O⊥平面GBD
用向量的方法证明还有一题--在四棱锥P-ABCD中,底面ABCD是举行,侧棱PA垂直于底面,E、F分别是AB、PC的中点。(1)求证:CD⊥PD(2)求证:EF‖平面PA...
用向量的方法证明
还有一题 - -
在四棱锥P-ABCD中,底面ABCD是举行,侧棱PA垂直于底面,E、F分别是AB、PC的中点。(1) 求证:CD⊥PD (2)求证:EF‖平面PAD 也用向量的方法证明 谢谢哈~ 展开
还有一题 - -
在四棱锥P-ABCD中,底面ABCD是举行,侧棱PA垂直于底面,E、F分别是AB、PC的中点。(1) 求证:CD⊥PD (2)求证:EF‖平面PAD 也用向量的方法证明 谢谢哈~ 展开
1个回答
展开全部
1. 以A为原点,分别以AB,AD,AA1为x,y,z轴建立坐标系,设AA1=2
A1(0,0,2),O(1,1,0) 向量A1O=(1,1,-2), G(2,2,1),B(2,0,0),D(0,2,0),平面GBD的法向量n=(x,y,z)
向量BD=(-2,2,0)向量GD=(-2,0,-1),向量n*向量BD=-2x+2y=0 x=y
向量n*向量GD=-2x-z=0 z=-2x 令x=1,y=1,z=-2 法向量 n=(1,1,-2)
向量A1O//法向量n A1O⊥平面GBD
2.以A为原点,分别以AB,AD,AP为x,y,z轴建立坐标系,设AP=a, AB=b,AD=c
A(0,0,0),P(0,0,a),B(b,0,0),C(b,c,0),D(0,c,0)
(1) 向量CD=(-b,0,0),向量PD=(0,-c,a) 向量CD*向量PD=-b*0-c*0+a*0=0 CD⊥PD
(2)E、F分别是AB、PC的中点,E(b/2,0,0),F(b/2,c/2,a/2)
向量EF=(0,c/2,a/2), 因为CD⊥PD ,CD⊥AD CD⊥平面PAD ,向量CD是平面PAD的一个法向量, 向量CD=(-b,0,0), 向量EF*向量CD=-b*0+c/2*0+a/2*0=0
EF‖平面PAD
A1(0,0,2),O(1,1,0) 向量A1O=(1,1,-2), G(2,2,1),B(2,0,0),D(0,2,0),平面GBD的法向量n=(x,y,z)
向量BD=(-2,2,0)向量GD=(-2,0,-1),向量n*向量BD=-2x+2y=0 x=y
向量n*向量GD=-2x-z=0 z=-2x 令x=1,y=1,z=-2 法向量 n=(1,1,-2)
向量A1O//法向量n A1O⊥平面GBD
2.以A为原点,分别以AB,AD,AP为x,y,z轴建立坐标系,设AP=a, AB=b,AD=c
A(0,0,0),P(0,0,a),B(b,0,0),C(b,c,0),D(0,c,0)
(1) 向量CD=(-b,0,0),向量PD=(0,-c,a) 向量CD*向量PD=-b*0-c*0+a*0=0 CD⊥PD
(2)E、F分别是AB、PC的中点,E(b/2,0,0),F(b/2,c/2,a/2)
向量EF=(0,c/2,a/2), 因为CD⊥PD ,CD⊥AD CD⊥平面PAD ,向量CD是平面PAD的一个法向量, 向量CD=(-b,0,0), 向量EF*向量CD=-b*0+c/2*0+a/2*0=0
EF‖平面PAD
Sievers分析仪
2025-01-06 广告
2025-01-06 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询