高一数学题,在线等
已知f(x)=0.5cos(2x+6分之派)+sinxcosxx∈R。求f(x)的对称轴方程。若α∈(-2分之派,0),且f(α)=4分之根号2,求α。...
已知f(x)=0.5cos(2x+6分之派)+sinxcosx x∈R。求f(x)的对称轴方程。若α∈(-2分之派,0),且f(α)=4分之根号2,求α。
展开
3个回答
展开全部
f(x)=0.5cos(2x+π/6)+sinxcosx
=0.5[cos2xcos(π/6)-sin2xsin(π/6)]+0.5sin2x
=0.5[(√3/2)cos2x+(1/2)sin2x]
=0.5[sin(π/3)cos2x+cos(π/3)sin2x]
=0.5sin(2x+π/3)
令sin(2x+π/3)=±1得2x+π/3=kπ+π/2,可求得对称轴方程为x=(k/2)π+π/12 (k∈Z)
f(α) =0.5sin(2α+π/3)=√2/4,可得sin(2α+π/3)=√2/2
因为α∈(-π/2,0),所以2α+π/3∈(-2π/3,π/3),结合上面的结果得2α+π/3=π/4,解得
α= - π/6
=0.5[cos2xcos(π/6)-sin2xsin(π/6)]+0.5sin2x
=0.5[(√3/2)cos2x+(1/2)sin2x]
=0.5[sin(π/3)cos2x+cos(π/3)sin2x]
=0.5sin(2x+π/3)
令sin(2x+π/3)=±1得2x+π/3=kπ+π/2,可求得对称轴方程为x=(k/2)π+π/12 (k∈Z)
f(α) =0.5sin(2α+π/3)=√2/4,可得sin(2α+π/3)=√2/2
因为α∈(-π/2,0),所以2α+π/3∈(-2π/3,π/3),结合上面的结果得2α+π/3=π/4,解得
α= - π/6
展开全部
解:先把 0.5cos(2x+ π/6)展开,并与sinxcosx合并,可得f(x)=0.5sin(2x+ π/3),由正弦函数的对称轴方程可知,2x+ π/3=(π/2)+kπ,(k∈Z),解得x=(π/12)+ kπ/2 ,(k∈Z).即f(x)的对称轴方程为x=(π/12)+ kπ/2 ,(k∈Z)
∵f(α)=4分之根号2,∴代入方程得f(a)=0.5sin(2a+ π/3)=4分之根号2,即sin(2a+ π/3)=2分之根号2,∴2a+ π/3=π/4 +2kπ或2a+ π/3=3π/4 +2kπ,(k∈Z).解得,a=-π/24 +kπ或 a=5π/12 +kπ,(k∈Z).∵a∈(-π/2,0),∴在a=-π/24 +kπ中k取0, 得a=-π/24.
∵f(α)=4分之根号2,∴代入方程得f(a)=0.5sin(2a+ π/3)=4分之根号2,即sin(2a+ π/3)=2分之根号2,∴2a+ π/3=π/4 +2kπ或2a+ π/3=3π/4 +2kπ,(k∈Z).解得,a=-π/24 +kπ或 a=5π/12 +kπ,(k∈Z).∵a∈(-π/2,0),∴在a=-π/24 +kπ中k取0, 得a=-π/24.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
用的是手机,心有余而力不足啊
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询