展开全部
解:∵∫(-∞,+∞)e^(-t²)dt=2∫(0,+∞)e^(-t²)dt
为了求解方便,设A=∫(0,+∞)e^(-t²)dt
∴A²=(∫(0,+∞)e^(-t²)dt)*(∫(0,+∞)e^(-t²)dt)
=(∫(0,+∞)e^(-x²)dx)*(∫(0,+∞)e^(-y²)dy)
=∫(0,+∞)∫(0,+∞)e^(-x²-y²)dxdy
=∫(0,π/2)dθ∫(0,+∞)e^(-ρ²)ρdρ (做极坐标变换,设x=ρcosθ,y=ρsinθ)
=(π/2)/2∫(0,+∞)e^(-ρ²)d(ρ²)
=(π/4)[-e^(-ρ²)]│(0,+∞)
=(π/4)(0+1)
=π/4
即 A=√π/2
故 ∫(-∞,+∞)e^(-t²)dt=2A=√π。
为了求解方便,设A=∫(0,+∞)e^(-t²)dt
∴A²=(∫(0,+∞)e^(-t²)dt)*(∫(0,+∞)e^(-t²)dt)
=(∫(0,+∞)e^(-x²)dx)*(∫(0,+∞)e^(-y²)dy)
=∫(0,+∞)∫(0,+∞)e^(-x²-y²)dxdy
=∫(0,π/2)dθ∫(0,+∞)e^(-ρ²)ρdρ (做极坐标变换,设x=ρcosθ,y=ρsinθ)
=(π/2)/2∫(0,+∞)e^(-ρ²)d(ρ²)
=(π/4)[-e^(-ρ²)]│(0,+∞)
=(π/4)(0+1)
=π/4
即 A=√π/2
故 ∫(-∞,+∞)e^(-t²)dt=2A=√π。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |