已知:如图8,在△ABC中,∠ACB=90°CD⊥AB于点D,点E在AC上,
2个回答
展开全部
分析:由已知说明∠FCE=∠B,∠FEC=∠ACB,再结合EC=BC证明△FEC≌△ACB,利用全等三角形的性质即可证明.
解答:证明:∵FE⊥AC于点E,∠ACB=90°,
∴∠FEC=∠ACB=90°.
∴∠F+∠ECF=90°.
又∵CD⊥AB于点D,
∴∠A+∠ECF=90°.
∴∠A=∠F.
在△ABC和△FCE中,∠A=∠F∠ACB=∠FECBC=CE,
∴△ABC≌△FCE(AAS),
∴AB=FC.
点评:此题考查简单的线段相等,可以通过全等三角形来证明,要注意利用此题中的图形条件,同角的余角相等.
解答:证明:∵FE⊥AC于点E,∠ACB=90°,
∴∠FEC=∠ACB=90°.
∴∠F+∠ECF=90°.
又∵CD⊥AB于点D,
∴∠A+∠ECF=90°.
∴∠A=∠F.
在△ABC和△FCE中,∠A=∠F∠ACB=∠FECBC=CE,
∴△ABC≌△FCE(AAS),
∴AB=FC.
点评:此题考查简单的线段相等,可以通过全等三角形来证明,要注意利用此题中的图形条件,同角的余角相等.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询