高三解析几何
已知椭圆C:x/4+y=1的焦点为F1,F2,若点P在椭圆上,且满足|PO|=|PF1||PF2|(其中O为原点),则称点P为★点。那么,怎么证明椭圆上仅有有限个点是★点...
已知椭圆C:x/4+y=1的焦点为F1,F2,若点P在椭圆上,且满足|PO|=|PF1||PF2|(其中O为原点),则称点P为★点。那么,怎么证明椭圆上仅有有限个点是★点?
展开
1个回答
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
类别
我们会通过消息、邮箱等方式尽快将举报结果通知您。
说明
0/200