谁能解读2道高中数列题
最好每一步都有解说(待定系数法)例:数列{an}满足a1=1且an=2an-1+13n(n≥2),求an。解:令an+x•13n=2(an+x•1...
最好每一步都有解说
(待定系数法)
例:数列{an}满足a1=1且an=2an-1+13n(n≥2),求an。
解:令an+x•13n=2(an+x•13n-1)
则an=2an-1+ 2x•13n-1-x•13n=53 x•13n-1=5x•13n
而由已知an=2an-1+13n故5x=1,则x=15 。
故an+15 •13n=2(an-1+15 •13n-1)从而{an+15 •13n}是公比为q=2、首项为a1+15 •13=1615 的等比数列。 于是an+15 •13n=1615 ×2n-1,则an=1615 ×2n-1-15 •13n=115 (2n+3-13n-1)
通过Sn求an:
数列{an}满足an=5Sn-3,求an。
解:令n=1,有a1=5an-3,∴a1=34 。由于an=5Sn-3………①则 an-1 =5 Sn-1-3………②①-②得到an-an-1=5(Sn-Sn-1) ∴an-an-1 =5an 故an=-14 an-1,则{an}是公比为q=-14 、首项an=34 的等比数列,则an=34 (-14 )n-1 展开
(待定系数法)
例:数列{an}满足a1=1且an=2an-1+13n(n≥2),求an。
解:令an+x•13n=2(an+x•13n-1)
则an=2an-1+ 2x•13n-1-x•13n=53 x•13n-1=5x•13n
而由已知an=2an-1+13n故5x=1,则x=15 。
故an+15 •13n=2(an-1+15 •13n-1)从而{an+15 •13n}是公比为q=2、首项为a1+15 •13=1615 的等比数列。 于是an+15 •13n=1615 ×2n-1,则an=1615 ×2n-1-15 •13n=115 (2n+3-13n-1)
通过Sn求an:
数列{an}满足an=5Sn-3,求an。
解:令n=1,有a1=5an-3,∴a1=34 。由于an=5Sn-3………①则 an-1 =5 Sn-1-3………②①-②得到an-an-1=5(Sn-Sn-1) ∴an-an-1 =5an 故an=-14 an-1,则{an}是公比为q=-14 、首项an=34 的等比数列,则an=34 (-14 )n-1 展开
1个回答
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询