24、如图,在Rt△ABC中,∠ACB=90°,半径为1的圆A与边AB相交于点D,与边AC相交于点E,连结DE并延长,与线
24、如图,在Rt△ABC中,∠ACB=90°,半径为1的圆A与边AB相交于点D,与边AC相交于点E,连结DE并延长,与线段BC的延长线交于点P。(1)当∠B=30°时,...
24、如图,在Rt△ABC中,∠ACB=90°,半径为1的圆A与边AB相交于点D,与边AC相交于点E,连结DE并延长,与线段BC的延长线交于点P。
(1)当∠B=30°时,连结AP,若△AEP与△BDP相似,求CE的长;
(2)若CE=2,BD=BC,求∠BPD的正切值;
(3)若tan∠BPD= ,设CE=x,△ABC的周长为y,求y关于x的函数关系式。 展开
(1)当∠B=30°时,连结AP,若△AEP与△BDP相似,求CE的长;
(2)若CE=2,BD=BC,求∠BPD的正切值;
(3)若tan∠BPD= ,设CE=x,△ABC的周长为y,求y关于x的函数关系式。 展开
展开全部
(1)解:∵∠B=30°∠ACB=90°∴∠BAC=60°
∵AD=AE ∴∠AED=60°=∠CEP
∴∠EPC=30°
∴三角形BDP为等腰三角形
∵△AEP与△BDP相似
∴∠EAP=∠EPA=∠DBP=∠DPB=30°
∴AE=EP=1
∴在RT△ECP中,EC= EP=
(2)过点D作DQ⊥AC于点Q,且设AQ=a,BD=x
∵AE=1,EC=2
∴QC=3-a
∵∠ACB=90°
∴△ADQ与△ABC相似
∴
即 ,∴
∵在RT△ADQ中
∵
∴
解之得x=4,即BC=4
过点C作CF//DP
∴△ADE与△AFC相似,
∴ ,即AF=AC,即DF=EC=2,
∴BF=DF=2
∵△BFC与△BDP相似
∴ ,即:BC=CP=4
∴tan∠BPD=
(3)过D点作DQ⊥AC于点Q,则△DQE与△PCE相似,设AQ=a,则QE=1-a
∴ 且
∴
∵在Rt△ADQ中,据勾股定理得:
即: ,解之得
∵△ADQ与△ABC相似
∴
∴
∴三角形ABC的周长
即: ,其中x>0
∵AD=AE ∴∠AED=60°=∠CEP
∴∠EPC=30°
∴三角形BDP为等腰三角形
∵△AEP与△BDP相似
∴∠EAP=∠EPA=∠DBP=∠DPB=30°
∴AE=EP=1
∴在RT△ECP中,EC= EP=
(2)过点D作DQ⊥AC于点Q,且设AQ=a,BD=x
∵AE=1,EC=2
∴QC=3-a
∵∠ACB=90°
∴△ADQ与△ABC相似
∴
即 ,∴
∵在RT△ADQ中
∵
∴
解之得x=4,即BC=4
过点C作CF//DP
∴△ADE与△AFC相似,
∴ ,即AF=AC,即DF=EC=2,
∴BF=DF=2
∵△BFC与△BDP相似
∴ ,即:BC=CP=4
∴tan∠BPD=
(3)过D点作DQ⊥AC于点Q,则△DQE与△PCE相似,设AQ=a,则QE=1-a
∴ 且
∴
∵在Rt△ADQ中,据勾股定理得:
即: ,解之得
∵△ADQ与△ABC相似
∴
∴
∴三角形ABC的周长
即: ,其中x>0
展开全部
(1)先证明∠B=∠BPD=30°,∵△AEP与△BDP相似 ∴△AEP与△BDP都为等腰三角形
∴AE=PE=1
在用再用三角函数算,
∵sin30°=CE/EP=1/2
∴CE=1/2
∴AE=PE=1
在用再用三角函数算,
∵sin30°=CE/EP=1/2
∴CE=1/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
这是天利38套2010第2套第25题,也就是上海市的2010中考题,你可以去查查
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
没图怎么解,而且我感觉你写错题目了,应该是相切吧
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询