f(x)=x^2+4x+3,x∈R,函数g(t)表示f(x)在[t,t+2]上的最大值
f(x)=x^2+4x+3,x∈R,函数g(t)表示f(x)在[t,t+2]上的最大值,求g(t)的表达式答案给了四种分类情况最后取的是以-3为分界的两种怎么做这种题??...
f(x)=x^2+4x+3,x∈R,函数g(t)表示f(x)在[t,t+2]上的最大值,求g(t)的表达式
答案给了四种分类情况
最后取的是以-3为分界的两种
怎么做这种题?? 展开
答案给了四种分类情况
最后取的是以-3为分界的两种
怎么做这种题?? 展开
1个回答
展开全部
f(x)=(x+2)^2-1 对称轴x=-2
当 t+2<=-2 t<=-4时 g(t)=t^2+4t+3
当t>=-2时 g(t)=f(t+2)=(t+2)^2+4(t+2)+3=t^2+8t+15
当-4<t<-2时 f(t)=t^2+4t+3 f(t+2)=t^2+8t+15
分成两种情况
1) f(t)>=f(t+2) t^2+4t+3>=t^2+8t+15 4t<=-12 t<=-3
g(t)=f(t)
2) f(t)<=f(t+2) t>=-3
综上所述: t>=-3时 g(t)=f(t+2)=t^2+8t+15
t<=-3时 g(t)=f(t)=t^2+4t+3
当 t+2<=-2 t<=-4时 g(t)=t^2+4t+3
当t>=-2时 g(t)=f(t+2)=(t+2)^2+4(t+2)+3=t^2+8t+15
当-4<t<-2时 f(t)=t^2+4t+3 f(t+2)=t^2+8t+15
分成两种情况
1) f(t)>=f(t+2) t^2+4t+3>=t^2+8t+15 4t<=-12 t<=-3
g(t)=f(t)
2) f(t)<=f(t+2) t>=-3
综上所述: t>=-3时 g(t)=f(t+2)=t^2+8t+15
t<=-3时 g(t)=f(t)=t^2+4t+3
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询