如图,四边形ABCD是正方形,三角形ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将B

如图,四边形ABCD是正方形,三角形ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60度得到BN,连接EN,AM,CM。求证三角形AMB... 如图,四边形ABCD是正方形,三角形ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60度得到BN,连接EN,AM,CM。求证三角形AMB全等于三角形ENB。当M点在何处时,AM加CM的值最小;何时AM加BM加CM的值最小,并说明理由。当AM+BM+CM的值最小为根号3+1时,求正方形的边长。 展开
 我来答
匿名用户
2014-03-22
展开全部
解:⑴∵△ABE是等边三角形,
∴BA=BE,∠ABE=60°.
∵∠MBN=60°,
∴∠MBN-∠ABN=∠ABE-∠ABN.
即∠BMA=∠NBE.
又∵MB=NB,
∴△AMB≌△ENB(SAS)
⑵①当M点落在BD的中点时,AM+CM的值最小
②连接CE,当M点位于BD与CE的交点处时,
AM+BM+CM的值最小
理由如下:连接MN.由⑴知,△AMB≌△ENB,
∴AM=EN.
∵∠MBN=60°,MB=NB,
∴△BMN是等边三角形.
∴BM=MN.
∴AM+BM+CM=EN+MN+CM
根据“两点之间线段最短”,得EN +MN+CM=EC最短
∴当M点位于BD与CE的交点处时,AM+BM+CM的值最小,即等于EC的长
⑶过E点作EF⊥BC交CB的延长线于F,
∴∠EBF=90°-60°=30°.
设正方形的边长为x,则BF=√3/2x,EF=x/2
在Rt△EFC中,
∵EF²+FC²=EC²,
(x/2)²+(√3/2x+x)²=(√3+1)²
解得x=√2
秋橘檸黄
2014-04-12 · TA获得超过716个赞
知道答主
回答量:61
采纳率:0%
帮助的人:16.2万
展开全部

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式