化学中原子能级轨道理论是什么?

并且解释下为什么Na2O2比Na2O更稳定,题目比较专业,望专业人士解答... 并且解释下为什么Na2O2比Na2O更稳定,题目比较专业,望专业人士解答 展开
 我来答
匿名用户
2013-11-12
展开全部
杂化轨道理论

  价键理论对共价键的本质和特点做了有力的论证,但它把讨论的基础放在共用一对电子形成一个共价键上,在解释许多分子、原子的价键数目及分子空间结构时却遇到了困难。例如C原子的价电子是2s22p2,按电子排布规律,2个s电子是已配对的,只有2个p电子未成对,而许多含碳化合物中C都呈4价而不是2价,可以设想有1个s电子激发到p轨道去了。那么1个s轨道和3个p轨道都有不成对电子,可以形成4个共价键,但s和p的成键方向和能量应该是不同的。而实验证明:CH4分子中,4个C-H共价键是完全等同的,键长为114pm,键角为109°28'。BCl3,BeCl2,PCl3等许多分子也都有类似的情况。为了解释这些矛盾,1928年鲍林(Pauling)提出了杂化轨道概念,丰富和发展了的价键理论。他根据量子力学的观点提出:在同一个原子中,能量相近的不同类型的几个原子轨道在成键时,可以互相叠加重组,成为相同数目、能量相等的新轨道,这种新轨道叫杂化轨道。C原子中1个2s电子激发到2p后,1个2s轨道和3个2p轨道重新组合成4个sp3杂化轨道,它们再和4个H原子形成4个相同的C-H键,C位于正四面体中心,4个H位于四个顶角。
  杂化轨道种类很多,如三氯化硼(BCl3)分子中B有sp2杂化轨道,即由1个s轨道和2个p轨道组合成3个sp2杂化轨道,在氯化铍(BeCl2)中有sp杂化轨道,在过渡金属化合物中还有d轨道参与的sp3d和sp3d2杂化轨道等。以上几例都是阐明了共价单键的性质,至于乙烯和乙炔分子中的双键和三键的形成,又提出了σ键和π键的概念。如把两个成键原子核间联线叫键轴,把原子轨道沿键轴方向“头碰头”的方式重叠成键,称为σ键。把原子轨道沿键轴方向“肩并肩”的方式重叠,称为π键。例如在乙烯( )分子中有碳碳双键(C=C),碳原子的激发态中2px,2py和2s形成sp2杂化轨道,这3个轨道能量相等,位于同一平面并互成120℃夹角,另外一个pz轨道未参与杂化,位于与平面垂直的方向上。碳碳双键中的sp2杂化如下所示。
  这3个sp2杂化轨道中有2个轨道分别与2个H原子形成σ单键,还有1个sp2轨道则与另一个C的sp2轨道形成头对头的σ键,同时位于垂直方向的pz轨道则以肩并肩的方式形成了π键。也就是说碳碳双键是由一个σ键和一个π键组成,即双键中两个键是不等同的。π键原子轨道的重叠程度小于σ键,π键不稳定,容易断裂,所以含有双键的烯烃很容易发生加成反应,如乙烯(H2C=CH2)和氯(Cl2)反应生成氯乙烯(Cl—CH2—CH2—Cl)。
  乙炔分子(C2H2)中有碳碳三键(HC≡CH),激发态的C原子中2s和2px轨道形成sp杂化轨道。这两个能量相等的sp杂化轨道在同一直线上,其中之一与H原子形成σ单键,另外一个sp杂化轨道形成C原子之间的σ键,而未参与杂化的py与pz则垂直于x轴并互相垂直,它们以肩并肩的方式与另一个C的py,pz形成π键。即碳碳三键是由一个σ键和两个π键组成。这两个π键不同于σ键,轨道重叠也较少并不稳定,因而容易断开,所以含三键的炔烃也容易发生加成反应
  杂化轨道限于最外层电子,而在第一层的两个电子不参与反应,而在其他层上有许多的轨道,电子会从能量低的层“跃迁”到能量高的层,而原来能量低的层是因为电子的运动方向相反,而跃迁以后电子就只向一种方向运动,所以能量会高。并且反应以后组成的能量介于原来的S轨道和P轨道能量之间。
物声科技2024
2024-10-28 广告
在力学试验过程监测中,北京物声科技有限公司采用高精度传感器与先进的数据采集系统,实时捕捉试验中的力学参数变化。通过实时监测,我们能确保试验数据的准确性和可靠性,及时发现并处理异常情况。我们的监测系统具有高度的稳定性和灵敏度,能够适用于多种复... 点击进入详情页
本回答由物声科技2024提供
thorncat
推荐于2016-05-27 · 知道合伙人教育行家
thorncat
知道合伙人教育行家
采纳数:1962 获赞数:33650
本科天津大学制药工程,硕士上海交大生物工程。现任西南化工研究设计院有限公司高级工程师。

向TA提问 私信TA
展开全部
原子轨道(英语:atomic orbital),又称轨态,是以数学函数描述原子中电子似波行为。此波函数可用来计算在原子核外的特定空间中,找到原子中电子的机率,并指出电子在三维空间中的可能位置。“轨道”便是指在波函数界定下,电子在原子核外空间出现机率较大的区域。具体而言,原子轨道是在环绕着一个原子的许多电子(电子云)中,个别电子可能的量子态,并以轨道波函数描述。

现今普遍公认的原子结构是波耳氢原子模型:电子像行星,绕着原子核(太阳)运行。然而,电子不能被视为形状固定的固体粒子,原子轨道也不像行星的椭圆形轨道。更精确的比喻应是,大范围且形状特殊的“大气”(电子),分布于极小的星球(原子核)四周。只有原子中存在唯一电子时,原子轨道才能精准符合“大气”的形状。当原子中有越来越多电子时,电子越倾向均匀分布在原子核四周的空间体积中,因此“电子云”[4]越倾向分布在特定球形区域内(区域内电子出现机率较高)。

早在1904年,日本物理学家长冈半太郎首度发表电子以类似环绕轨道的方式在原子内运转的想法。1913年,丹麦物理学家尼尔斯·波耳提出理论,主张电子以固定的角动量环绕着体积极小的原子核运行。然而,一直到1926年、量子力学发展后,薛定谔方程式才解释了原子中的电子波动,定下关于新概念“轨道”的函数。
由于这个新概念不同于古典物理学中的轨道想法,1932年美国化学家罗伯特·马利肯提出以“轨道”(orbital)取代“轨道”(orbit)一词。原子轨道是单一原子的波函数,使用时必须代入n(主量子数)、l(角量子数)、m(磁量子数)三个量子化参数,分别决定电子的能量、角动量和方位,三者统称为量子数[1]。每个轨道都有一组不同的量子数,且最多可容纳两个电子。s轨道、p轨道、d轨道、f轨道则分别代表角量子数l=0, 1, 2, 3的轨道,表现出如右图的轨道形状及电子排布。它的名称源于对其原子光谱特征谱线外观的描述,分为锐系光谱(sharp)、主系光谱(principal)、漫系光谱(diffuse)、基系光谱(fundamental),其余则依字母序命名(跳过 j)。
在原子物理学的运算中,复杂的电子函数常被简化成较容易的原子轨道函数组合。虽然多电子原子的电子并不能以“一或二个电子之原子轨道”的理想图像解释,它的波函数仍可以分解成原子轨道函数组合,以原子轨道理论进行分析;就像在某种意义上,由多电子原子组成的电子云在一定程度上仍是以原子轨道“构成”,每个原子轨道内只含一或二个电子。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式