二次函数的性质和图像

狄真0Ga
高粉答主

2019-07-25 · 说的都是干货,快来关注
知道小有建树答主
回答量:967
采纳率:100%
帮助的人:28.2万
展开全部

1、二次函数的性质:

特别地,二次函数(以下称函数)y=ax2+bx+c(a≠0),

当y=0时,二次函数为关于x的一元二次方程(以下称方程),

即ax2+bx+c=0(a≠0)

此时,函数图像与x轴有无交点即方程有无实数根

函数与x轴交点的横坐标即为方程的根。

2、二次函数的图像:

扩展资料:

一般地,自变量x和因变量y之间存在如下关系:

一般式:y=ax2+bx+c(a≠0,a、b、c为常数),则称y为x的二次函数。

顶点式:y=a(x-h)2+k(a≠0,a、h、k为常数)。

交点式(与x轴):y=a(x-x1)(x-x2)

(a≠0,a、且x1、x2为常数)x1、x2为二次函数与x轴的两交点。

等高式:y=a(x-x1)(x-x2)+m(a≠0,且过(x1、m)(x2、m)为常数)x1、x2为二次函数与直线y=m的两交点。

参考资料:百度百科-二次函数性质

狄半烟5Q
推荐于2017-11-26 · TA获得超过590个赞
知道小有建树答主
回答量:652
采纳率:0%
帮助的人:227万
展开全部
二次函数
I.定义与定义表达式
一般地,自变量x和因变量y之间存在如下关系:
y=ax^2+bx+c(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)
则称y为x的二次函数。
二次函数表达式的右边通常为二次三项式。
II.二次函数的三种表达式
一般式:y=ax^2;+bx+c(a,b,c为常数,a≠0)
顶点式:y=a(x-h)^2;+k [抛物线的顶点P(h,k)]
交点式:y=a(x-x1)(x-x2) [仅限于与x轴有交点A(x1,0)和 B(x2,0)的抛物线]
注:在3种形式的互相转化中,有如下关系:
h=-b/2a k=(4ac-b^2;)/4a x1,x2=(-b±√b^2;-4ac)/2a
III.二次函数的图像
在平面直角坐标系中作出二次函数y=x²的图像,
可以看出,二次函数的图像是一条抛物线。
IV.抛物线的性质
1.抛物线是轴对称图形。对称轴为直线
x = -b/2a。
对称轴与抛物线唯一的交点为抛物线的顶点P。
特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)
2.抛物线有一个顶点P,坐标为
P [ -b/2a ,(4ac-b^2;)/4a ]。
当-b/2a=0时,P在y轴上;当Δ= b^2-4ac=0时,P在x轴上。
3.二次项系数a决定抛物线的开口方向和大小。
当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。
|a|越大,则抛物线的开口越小。
4.一次项系数b和二次项系数a共同决定对称轴的位置。
当a与b同号时(即ab>0),对称轴在y轴左;
当a与b异号时(即ab<0),对称轴在y轴右。
5.常数项c决定抛物线与y轴交点。
抛物线与y轴交于(0,c)
6.抛物线与x轴交点个数
Δ= b^2-4ac>0时,抛物线与x轴有2个交点。
Δ= b^2-4ac=0时,抛物线与x轴有1个交点。
Δ= b^2-4ac<0时,抛物线与x轴没有交点。X的取值是虚数(X=-b加减 根号内B2-4ac的值的相反数,乘上虚数i,整个式子除2a
V.二次函数与一元二次方程
特别地,二次函数(以下称函数)y=ax^2;+bx+c,
当y=0时,二次函数为关于x的一元二次方程(以下称方程),
即ax^2;+bx+c=0
此时,函数图像与x轴有无交点即方程有无实数根。
函数与x轴交点的横坐标即为方程的根。
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式