初三数学,第八题,求解
2个回答
展开全部
分析:(1)根据AB、OB的长,即可得到A、B点的坐标;由于四边形ABCO是平行四边形,则AB=OC,由此可液誉渣求出OC的长,即可得到C点的坐标,进而可用待定系数法求出抛物线的解析式;
(2)根据抛物线的解析式可求出D点的坐标及抛物线的对称轴方程,进而可求出E、F的坐标;若四边形POQE是等腰梯形,则OP=EQ,而OB=EF,可得BP=FQ,根据这个等量关系即可求出t的值;
(3)由于∠PBO、∠QOB都是直角,对应相等,若以P、B、O为顶点的三角形与以点Q、B、O为顶点的三角形相似,则有两种情闹悄况:
①P、Q在y轴同侧,②P、Q在y轴两侧;
每种情况又分为△PBO∽△QOB(此时两者全等),△PBO∽△BOQ两种情况;根据不同的相似三角形所得到的不同的比例线段即可求出t的值.
点评:此题是二次函虚禅数的综合类试题,涉及到二次函数解析式的确定、等腰梯形的判定、相似三角形的判定和性质等重要知识点,在求有关动点问题时要注意分析题意分情况讨论结果.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询