已知A、B,C是三角形ABC的三个内角,且满足2sinB=sinA+sinC,设B的最大值为B0

已知A、B,C是三角形ABC的三个内角,且满足2sinB=sinA+sinC,设B的最大值为B0。1,求B0。2,当B=3B0/4时,求cosA-cosC的值。... 已知A、B,C是三角形ABC的三个内角,且满足2sinB=sinA+sinC,设B的最大值为B0。 1,求B0。2,当B=3B0/4时,求cosA-cosC的值。 展开
 我来答
娱乐这个feel倍爽儿
2014-06-24 · 人生如戏,戏如人生 娱百家事,乐万千户
娱乐这个feel倍爽儿
采纳数:47982 获赞数:334161

向TA提问 私信TA
展开全部
2sinB=sinA+sinC正玄定理得2b=a+c
平方 4b^2=a^2+2ac+c^2
余弦定理 b^2=a^2+c^2-2accosB
cosB=(3(a^2+c^2)/8ac)-1/4越小B越大
=3(歼帆帆a/8c+c/8a)-1/4 a=c cosB最小解B=60 等边三角形
B=3B0/4=45 A+C=135
且由题设可得sinA+sinC=√2
再设cosA-cosC=x
两式轿雀平方后再相加,可得
2-2(cosAcosC-sinAsinC)=2+x²
∴x²=-2cos(A+C)=√2
即x²=√2
∴x=±√(√2)
即原式=±√(√2)

如果满意请点击右上角评价点【满意】即氏雹可~~
你的采纳是我前进的动力~~
答题不易..祝你开心~(*^__^*) 嘻嘻……
千年不富
2014-06-24 · TA获得超过353个赞
知道小有建树答主
回答量:1890
采纳率:0%
帮助的人:1717万
展开全部
2sinB=sinA+sinC正玄纯敬定理得2b=a+c
平方 4b^2=a^2+2ac+c^2
余弦定理 b^2=a^2+c^2-2accosB
cosB=(3(a^2+c^2)/8ac)-1/4越做迹慎小B越大
=3(a/8c+c/8a)-1/4 a=c cosB最小解B=60 等边三角形
B=3B0/4=45 A+C=135
且由题设可得sinA+sinC=√2
再设cosA-cosC=x
两式平方后再相加,可得
2-2(cosAcosC-sinAsinC)=2+x
∴x=-2cos(A+C)=√2
即x=√2
∴x=±√(√2)
即原州坦式=±√(√2)
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式