证明直径是圆中最长的弦。要用三角形的方法!
2014-08-06
展开全部
过圆直径的弦做圆内接三角形,这个三角形是以直径为斜边的三角形,故在三角形中两直角边平方和等斜边,所以直径是最长的弦
2014-08-06
展开全部
已知⊙O中,AB是直径,CD是弦
求证:AB>CD
证明:假设AB<CD
连接OC,OD
则OC+OD=AB
∵AB<CD
则OC+OD<CD
这与公理:两点之间,线段最短相矛盾
∴假设不成立
∴AB≮CD
∴直径是圆中最长的弦
求证:AB>CD
证明:假设AB<CD
连接OC,OD
则OC+OD=AB
∵AB<CD
则OC+OD<CD
这与公理:两点之间,线段最短相矛盾
∴假设不成立
∴AB≮CD
∴直径是圆中最长的弦
追答
过圆心作任意弦AB(非直径)的垂直平分线,交点设为O',在RT三角形OO'A中,AO是斜边,AO>O'A.d=2AO,AB=2O'A,所以直径比任何其他弦要长
希望可以采纳,谢谢
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2014-08-06
展开全部
已知⊙O中,AB是直径,CD是弦
求证:AB>CD
证明:假设AB<CD
连接OC,OD
则OC+OD=AB
∵AB<CD
则OC+OD<CD
这与公理:两点之间,线段最短相矛盾
∴假设不成立
∴AB≮CD
∴直径是圆中最长的弦
求证:AB>CD
证明:假设AB<CD
连接OC,OD
则OC+OD=AB
∵AB<CD
则OC+OD<CD
这与公理:两点之间,线段最短相矛盾
∴假设不成立
∴AB≮CD
∴直径是圆中最长的弦
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2014-08-06
展开全部
已知⊙O中,AB是直径,CD是弦
求证:AB>CD
证明:假设AB<CD
连接OC,OD
则OC+OD=AB
∵AB<CD
则OC+OD<CD
这与公理:两点之间,线段最短相矛盾
∴假设不成立
∴AB≮CD
∴直径是圆中最长的弦
求证:AB>CD
证明:假设AB<CD
连接OC,OD
则OC+OD=AB
∵AB<CD
则OC+OD<CD
这与公理:两点之间,线段最短相矛盾
∴假设不成立
∴AB≮CD
∴直径是圆中最长的弦
追答
还有一种方法
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询