已知命题“x∈R,|x-a|+|x+1|≤2”是假命题,则实数a的取值范围

伟大还帅气灬小草d
推荐于2016-01-31
知道答主
回答量:78
采纳率:0%
帮助的人:14.7万
展开全部
彐X∈R,|X-a|+|X+1|≤2 是假命题
其含义是不存在X∈R,使|X-a|+|X+1|≤2成立
即|X-a|+|X+1|>2恒成立
只需|X-a|+|X+1|的最小值>2
而|X-a|+|X+1|的几何意义是:
数轴上与两点-1和a的距离之和,故最小值为-1与a之间距离,即为|a+1|
所以|a+1|>2
解得a>1或a<-3
追问
为什么是|a+1|
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式