如图,正方形ABCD中,E是BC上的一点,CF为外角的平分线,AE=EF,求证:AE⊥EF
2个回答
展开全部
解:过点F作FG⊥CG于点G
设正方形的边长为a,BE=x,FG=y;
∵四边形ABCD为正方形,且CF为外角平分线,
∴∠FCG=45°,故∠CFG=∠FCG=45°;
∴CG=FG=y,EG=a-x+y;
∵AE=EF,
∴AE2=EF2;
由勾股定理得:AE2=a2+x2,EF2=(a-x+y)2+y2,
故a2+x2=(a-x+y)2+y2,
∵(a-x+y)2+y2=(a-x)2+2(a-x)y+y2+y2
=a2-2ax+x2+2ay-2xy+2y2
=a2+x2-2(x-y)(a+y)
∴a2+x2=a2+x2-2(x-y)(a+y)
∴2(x-y)(a+y)=0,
∵a+y>0,
∴x-y=0,x=y
在Rt△ABE与Rt△EGF中,
,
∴△ABE≌△EGF(HL),
∴∠BAE=∠GEF;
∵∠BAE+∠AEB=90°,
∴∠BAE+∠GEF=90°,
∴∠AEF=180°-90°=90°,
故AE⊥EF.
设正方形的边长为a,BE=x,FG=y;
∵四边形ABCD为正方形,且CF为外角平分线,
∴∠FCG=45°,故∠CFG=∠FCG=45°;
∴CG=FG=y,EG=a-x+y;
∵AE=EF,
∴AE2=EF2;
由勾股定理得:AE2=a2+x2,EF2=(a-x+y)2+y2,
故a2+x2=(a-x+y)2+y2,
∵(a-x+y)2+y2=(a-x)2+2(a-x)y+y2+y2
=a2-2ax+x2+2ay-2xy+2y2
=a2+x2-2(x-y)(a+y)
∴a2+x2=a2+x2-2(x-y)(a+y)
∴2(x-y)(a+y)=0,
∵a+y>0,
∴x-y=0,x=y
在Rt△ABE与Rt△EGF中,
|
∴△ABE≌△EGF(HL),
∴∠BAE=∠GEF;
∵∠BAE+∠AEB=90°,
∴∠BAE+∠GEF=90°,
∴∠AEF=180°-90°=90°,
故AE⊥EF.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询