
已知a∈(3π/4,5π/4),sin(a-π/4)=5/13,则sin a等于多少?
2个回答
展开全部
解:因为,a∈(3π/4,5π/4),sin(a-π/4)=5/13
所以,π/2<a-π/4<π, cos(a-π/4)=-根号下[1-sin²(a-π/4)]=-根号下[1-(5/13)²]=-12/13
所以,sina=sin(a-π/4+π/4)=sin(a-π/4)cosπ/4+cos(a-π/4)sinπ/4=[(根号2)/2]*[5/13-12/13]
=-7*(根号2)/26
所以,π/2<a-π/4<π, cos(a-π/4)=-根号下[1-sin²(a-π/4)]=-根号下[1-(5/13)²]=-12/13
所以,sina=sin(a-π/4+π/4)=sin(a-π/4)cosπ/4+cos(a-π/4)sinπ/4=[(根号2)/2]*[5/13-12/13]
=-7*(根号2)/26
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询