已知:如图,在平行四边形ABCD中,DE⊥AB于点E,DF⊥BC于点F,∠DAB的平分线交DE于点M,交DF于点N,交DC
已知:如图,在平行四边形ABCD中,DE⊥AB于点E,DF⊥BC于点F,∠DAB的平分线交DE于点M,交DF于点N,交DC于点P.(1)求证:∠ADE=∠CDF;(2)如...
已知:如图,在平行四边形ABCD中,DE⊥AB于点E,DF⊥BC于点F,∠DAB的平分线交DE于点M,交DF于点N,交DC于点P.(1)求证:∠ADE=∠CDF;(2)如果∠B=120°,求证:△DMN是等边三角形.
展开
1个回答
展开全部
解答:证明:(1)∵四边形ABCD是平行四边形,
∴∠DAB=∠C,DC∥AB,
∵DE⊥AB于点E,DF⊥BC于点F,
∴∠ADE=90°-∠DAB,∠CDF=90°-∠C,
∴∠ADE=∠CDF.
(2)证明:∵∠DAB的平分线交DE于点M,交DF于点N,交DC于点P,
∴∠DAP=∠BAP,
∵DC∥AB,
∴∠DPA=∠BAP,
∴∠DAP=∠DPA,
∴DA=DP,
∵∠ADE=∠CDF,∠DAP=∠DPA,DA=DP,
∴△DAM≌△DPN,
∴DM=DN,
∵∠B=120°,
∴∠MDN=360°-∠DEB-∠EFB-∠B=360°-90°-90°-120°=60°,
∴△DMN是等边三角形.
∴∠DAB=∠C,DC∥AB,
∵DE⊥AB于点E,DF⊥BC于点F,
∴∠ADE=90°-∠DAB,∠CDF=90°-∠C,
∴∠ADE=∠CDF.
(2)证明:∵∠DAB的平分线交DE于点M,交DF于点N,交DC于点P,
∴∠DAP=∠BAP,
∵DC∥AB,
∴∠DPA=∠BAP,
∴∠DAP=∠DPA,
∴DA=DP,
∵∠ADE=∠CDF,∠DAP=∠DPA,DA=DP,
∴△DAM≌△DPN,
∴DM=DN,
∵∠B=120°,
∴∠MDN=360°-∠DEB-∠EFB-∠B=360°-90°-90°-120°=60°,
∴△DMN是等边三角形.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询