6个回答
展开全部
判断积分是收敛,还是发散:积分后计算出来是定值,不是无穷大,就是收敛 convergent;积分后计算出来的不是定值,是无穷大,就是发散 divergent。
具体回答如下:
扩展资料:
设函数f(x)定义在[a,+∞)上。设f(x)在任意区间[a,A](A>a)上可积。
设函数f(x)定义在[a,b)上,而f(x)在x=b的任一左邻域内f(x)无界(此时称x=b为f(x)的瑕点)。设f(x)在任意[a,b-ε](0<ε<b-a)上可积。
如果在闭区间[a,b]上,无论怎样进行取样分割,只要它的子区间长度最大值足够小,函数f的黎曼和都会趋向于一个确定的值S,那么f在闭区间[a,b]上的黎曼积分存在。
参考资料来源:百度百科——广义积分
展开全部
1、积分是收敛,还是发散,
积分后计算出来是定值,不是无穷大,就是收敛 convergent;
积分后计算出来的不是定值,是无穷大,就是发散 divergent。
这种方法就是 integral test 。
2、这种情况,英文是 improper integral,汉译是一劈为二:
一部分称为暇积分,另一部分称为广义积分。
无论哪中,最后的判断,都离不开取极限。
3、具体解答如下,如有疑问,欢迎追问,有问必答,答必细致
积分后计算出来是定值,不是无穷大,就是收敛 convergent;
积分后计算出来的不是定值,是无穷大,就是发散 divergent。
这种方法就是 integral test 。
2、这种情况,英文是 improper integral,汉译是一劈为二:
一部分称为暇积分,另一部分称为广义积分。
无论哪中,最后的判断,都离不开取极限。
3、具体解答如下,如有疑问,欢迎追问,有问必答,答必细致
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
积分是收敛,还是发散, 积分后计算出来是定值,不是无穷大,就是收敛
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
引用Demon陌的回答:
判断积分是收敛,还是发散:积分后计算出来是定值,不是无穷大,就是收敛 convergent;积分后计算出来的不是定值,是无穷大,就是发散 divergent。
具体回答如下:
扩展资料:
设函数f(x)定义在[a,+∞)上。设f(x)在任意区间[a,A](A>a)上可积。
设函数f(x)定义在[a,b)上,而f(x)在x=b的任一左邻域内f(x)无界(此时称x=b为f(x)的瑕点)。设f(x)在任意[a,b-ε](0<ε<b-a)上可积。
如果在闭区间[a,b]上,无论怎样进行取样分割,只要它的子区间长度最大值足够小,函数f的黎曼和都会趋向于一个确定的值S,那么f在闭区间[a,b]上的黎曼积分存在。
参考资料来源:百度百科——广义积分
判断积分是收敛,还是发散:积分后计算出来是定值,不是无穷大,就是收敛 convergent;积分后计算出来的不是定值,是无穷大,就是发散 divergent。
具体回答如下:
扩展资料:
设函数f(x)定义在[a,+∞)上。设f(x)在任意区间[a,A](A>a)上可积。
设函数f(x)定义在[a,b)上,而f(x)在x=b的任一左邻域内f(x)无界(此时称x=b为f(x)的瑕点)。设f(x)在任意[a,b-ε](0<ε<b-a)上可积。
如果在闭区间[a,b]上,无论怎样进行取样分割,只要它的子区间长度最大值足够小,函数f的黎曼和都会趋向于一个确定的值S,那么f在闭区间[a,b]上的黎曼积分存在。
参考资料来源:百度百科——广义积分
展开全部
我不知道解但是第一个同学就是来误导大家的,x的负3次饭是不收敛的。而且两函数在无穷处都趋于0是不能说一个比另一个恒大的
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询