关于第二类曲面积分对称性的问题。。

 我来答
帐号已注销
高粉答主

2019-11-12 · 说的都是干货,快来关注
知道小有建树答主
回答量:263
采纳率:95%
帮助的人:11.4万
展开全部

如果连续或分段连续曲面关于如xoy面对称,且上半曲面和下半曲面的取向如果一致即上下曲面上关于xoy对称的两点处的法向量和z轴正向的夹角同为锐角或同为钝角,那么这时第二类曲面的对称性和第一类一致:被积函数为z的奇函数,则积分值为零。

为z的偶函数,则积分值为二倍的被积函数关于上半曲面的积分值。如果上半曲面和下半曲面的取向相反,则对称性和第一类相反即上面我说的那个球面的情况。

扩展资料:

转化为二重积分,必须注意两个问题:

(1)将曲面S向相应的坐标平面投影,求得二重积分的积分区域。

(2)根据曲面的侧(即法向量的方向)确定二重积分的符号。

根据积分表达式,确定投影平面,如要计算P(x,y,z)dydz,必须将S向yz平面投影,求

得二重积分的积分区域Dyz,此时P(x,y,z)dydz=±P(x(y,z),y,z)dydz,其中曲面S:x=x(y,z),(y,z)∈Dyz,二重积分的符号取决于法向量与x正向的夹角,为锐角时取正号,钝角时取负号,简记为前正、后负。

参考资料来源:百度百科-第二型曲面积分



Sievers分析仪
2025-01-06 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准... 点击进入详情页
本回答由Sievers分析仪提供
埋葬在海底
2017-11-06
知道答主
回答量:13
采纳率:0%
帮助的人:1.8万
展开全部
我认为,先去看投影,再去看转化为二重积分的符号,再看被积函数比较好理解。比如第一个投影在xoz面上,左右两侧的投影相同,但两部分曲面法向量与y轴正半轴的夹角肯定是一个是锐角,一个是钝角,投影相同,符号不同。这个时候再看被积函数关于xoz也是相反数,所以正好抵消掉,是二倍,第二个投影在zox面上投影原理一样,但被积函数关于zox面是偶函数,所以是0。第三个投影在yoz面上,投影相同,两部分曲面法向量与x轴正半轴夹角相同,所以积分符号相同。这时再看被积函数,关于yoz面是偶函数,故为2倍。
好了下面总结,这个奇偶的法则应该是:若被积为dxdy的,就看 西格玛 是否关于z轴对称,然后看被积函数关于z=0的积偶性。你的第三个是dydz,所以应该看 西格玛 是不是关于x=0对称,而不是去看关于y=0对称,第三种已经不适用于这个法则了,可以采用我上面所说的,拆开看 西格玛 和被积函数的方法。自己总结的,一家之言,不对还请指正。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友5f57f8679
2012-12-26 · TA获得超过828个赞
知道答主
回答量:26
采纳率:0%
帮助的人:22.9万
展开全部
这也叫满意回答?一个十分需要注意的地方就是,第二类曲线,曲面积分情况已经转变了。以第二类曲面积分为例,曲面积分Pdxdy,如果积分曲面(区域)关于xoy面对称,被积函数是关于z的偶函数,则积分值为零!
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
尹六六老师
推荐于2017-10-04 · 知道合伙人教育行家
尹六六老师
知道合伙人教育行家
采纳数:33772 获赞数:147249
百强高中数学竞赛教练, 大学教案评比第一名, 最受学生欢迎教

向TA提问 私信TA
展开全部
第二类曲面积分的奇偶对称性与普通积分(定积分,二重积分,三重积分)正好相反,
偶函数的积分为0,
奇函数的积分等于一半区域上积分的2倍。
更多追问追答
追问
你有没有看图片😒
追答
是啊,就是对侧面的
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
呵呵哈哈哈afg
2019-10-18
知道答主
回答量:1
采纳率:0%
帮助的人:695
展开全部
第三个答案是错误的。
因为没有进行曲面积分转二重积分这一步骤。
显然积分区域与y轴成的角度有钝角和锐角,要分成左右两边进行转化。
所以最后答案仍然是0,并不矛盾
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(3)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式