4个回答
展开全部
解:设任意x1,x2∈(0,+∞),且x1<x2
则f(x1)-f(x2)=x1+a/x1-x2+a/x2
=(x1-x2)+(x2a-x1a)/x1x2
=(x1-x2)+[(x2-x1)a]/x1x2
=(x1-x2)[1-a/x1x2]
=(x1-x2)[(x1x2-a)/x1x2]
因为a>0
若x1x2∈(0,根号a],则x1x2<a 所以f(x1)>f(x2)
所以,f(x)在(0,根号a]上是减函数
若x1x2∈(根号a,+∞),则x1x2>a 所以f(x1)<f(x2)
所以,f(x)在[根号a,+∞)上是增函数
同理可证,f(x)在[-根号a,0)上是减函数
在(-∞,-根号a]上是增函数
所以函数f(x)的单调增区间是(-∞,-根号a]与[根号a,+∞)
单调减区间是[-根号a,0)与(0,根号a]
则f(x1)-f(x2)=x1+a/x1-x2+a/x2
=(x1-x2)+(x2a-x1a)/x1x2
=(x1-x2)+[(x2-x1)a]/x1x2
=(x1-x2)[1-a/x1x2]
=(x1-x2)[(x1x2-a)/x1x2]
因为a>0
若x1x2∈(0,根号a],则x1x2<a 所以f(x1)>f(x2)
所以,f(x)在(0,根号a]上是减函数
若x1x2∈(根号a,+∞),则x1x2>a 所以f(x1)<f(x2)
所以,f(x)在[根号a,+∞)上是增函数
同理可证,f(x)在[-根号a,0)上是减函数
在(-∞,-根号a]上是增函数
所以函数f(x)的单调增区间是(-∞,-根号a]与[根号a,+∞)
单调减区间是[-根号a,0)与(0,根号a]
leipole
2024-11-29 广告
2024-11-29 广告
JMBK 3/E-Z是我们公司精心研发的一款高性能电气控制产品,专为满足中高端工业自动化领域对精确控制与安全性的高要求而设计。该产品集成了先进的电子技术与可靠的机械结构,具备出色的稳定性与灵活性,广泛应用于智能制造、自动化生产线及能源管理系...
点击进入详情页
本回答由leipole提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询