抛物线的性质有哪些?

 我来答
情感心理小C老师
情感倾听者

2015-12-11 · 让我来听你的故事
知道大有可为答主
回答量:7551
采纳率:80%
帮助的人:868万
展开全部
性质;
抛物线:y = ax *+ bx + c
a > 0时开口向上
a < 0时开口向下
c = 0时抛物线经过原点
b = 0时抛物线对称轴为y轴

顶点式y = a(x+h)* + k
解释:y等于a乘以(x+h)的平方+k
-h是顶点坐标的x
k是顶点坐标的y
一般用于求最大值与最小值

抛物线标准方程:y^2=2px
16/54
它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0) 准线方程为x=-p/2
由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px y^2=-2px x^2=2py x^2=-2py
匿名用户
2015-04-06
展开全部
抛物线:y = ax *+ bx + c
就是y等于ax 的平方加上 bx再加上 c
a > 0时开口向上
a < 0时开口向下
c = 0时抛物线经过原点
b = 0时抛物线对称轴为y轴
还有顶点式y = a(x+h)* + k
就是y等于a乘以(x+h)的平方+k
-h是顶点坐标的x
k是顶点坐标的y
一般用于求最大值与最小值
抛物线标准方程:y^2=2px
16/54
它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0) 准线方程为x=-p/2
由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px y^2=-2px x^2=2py x^2=-2py
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
q5462950
2015-04-07 · TA获得超过11.3万个赞
知道大有可为答主
回答量:5339
采纳率:71%
帮助的人:2148万
展开全部
面内与一个定点F和一条定直线l
的距离相等的点的轨迹叫做抛物线.
定点F叫做抛物线的焦点.
定直线l 叫做抛物线的准线.
新授内容
一,抛物线的范围: y2=2px
y取全体实数
X
Y
X 0
二,抛物线的对称性 y2=2px
关于X轴对称
没有对称中心,因此,抛物线又叫做无心圆锥曲线. 而椭圆和双曲线又叫做有心圆锥曲线
X
Y
新授内容
定义 :抛物线与对称轴的交点,叫做抛物线的顶点
只有一个顶点
X
Y
新授内容
三,抛物线的顶点 y2=2px
所有的抛物线的离心率都是 1
X
Y
新授内容
四,抛物线的离心率 y2=2px
基本点:顶点,焦点
基本线:准线,对称轴
基本量:P(决定抛物线开口大小)
X
Y
新授内容
五,抛物线的基本元素 y2=2px
+X,x轴正半轴,向右
-X,x轴负半轴,向左
+y,y轴正半轴,向上
-y,y轴负半轴,向下
新授内容
六,抛物线开口方向的判断
例.过抛物线y2=2px的焦点F任作一条直线m,交这抛物线于A,B两点,求证:以AB为直径的圆和这抛物线的准线相切.
分析:运用抛物线的定义和平面几何知识来证比较简捷.
证明:如图.
所以EH是以AB为直径的圆E的半径,且EH⊥l,因而圆E和准线l相切.
设AB的中点为E,过A,E,B分别向准线l引垂线AD,EH,BC,垂足为D,H,C,
则|AF|=|AD|,|BF|=|BC|
∴|AB|=|AF|+|BF|
=|AD|+|BC|=2|EH|
求满足下列条件的抛物线的方程
(1)顶点在原点,焦点是(0,-4)
(2)顶点在原点,准线是x=4
(3)焦点是F(0,5),准线是y=-5
(4)顶点在原点,焦点在x轴上,
过点A(-2,4)
练习
小 结 :
1,抛物线的定义,标准方程类型与图象的对应
关系以及判断方法
2,抛物线的定义,标准方程和它
的焦点,准线,方程
3,注重数形结合的思想.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式